Proyecto PREEV
“Prácticas Regulatoras en Envejecimiento y Extensión de Vida”

DT 3
Guía de Inspección de Gestión de Envejecimiento y de Operación a Largo Plazo de Centrales Nucleares
“El presente trabajo fue realizado bajo el auspicio y financiación del Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares, FORO”.
Guía de inspección de gestión del envejecimiento y de operación a largo plazo de centrales nucleares

Primera Edición (Mayo de 2011)
GUÍA DE INSPECCIÓN DE GESTIÓN DE ENVEJECIMIENTO
Y DE OPERACIÓN A LARGO PLAZO DE CENTRALES NUCLEARES

TABLA DE CONTENIDO

1. INTRODUCCIÓN .. 1
2. DEFINICIONES Y SIGLAS .. 2
3. OBJETIVOS Y ALCANCE .. 9
 3.1. Objetivo .. 9
 3.2. Alcance de la guía ... 10
4. INSPECIONES REGULATORIAS .. 10
 4.1. Inspecciones durante la vida de diseño ... 13
 4.1.1. Inspecciones durante la implantación del Plan de Gestión de Vida (PGV) (Inspección tipo 1) ... 13
 4.1.1.1. Objetivo de la inspección .. 13
 4.1.1.2. Aspectos organizativos y de gestión ... 14
 4.1.1.2.1. La estructura de la organización del explotador en relación a la gestión del envejecimiento .. 14
 4.1.1.2.2. La adquisición y registro de informaciones relacionadas con la gestión del envejecimiento .. 14
 4.1.1.2.3. El seguimiento de los compromisos (condiciones, no conformidades, requisitos regulatorios, etc.) aceptados y los introducidos por el OR. .. 16
 4.1.1.3. Alcance y selección de ESC ... 16
 4.1.1.4. Resultados de la aplicación de la metodología del alcance y selección de ESC 18
 4.1.1.5. Aspectos metodológicos relacionados con los análisis del PGV 23
 4.1.1.6. Resultados del análisis del PGV .. 25
 4.1.1.7. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento .. 30
 4.1.1.8. Seguimiento de propuestas de mejora (PM) ... 31
 4.1.1.9. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento .. 32
 4.1.1.10. Revisiones de los documentos soporte ... 32
 4.1.1.11. Gestión de la obsolescencia ... 33
 4.1.2. Inspecciones rutinarias o periódicas del PGV (Inspección tipo 2) 34
 4.1.2.1. Objetivo de la inspección .. 34
 4.1.2.2. Aspectos organizativos y de gestión ... 34
 4.1.2.3. Alcance y selección de ESC ... 34
 4.1.2.4. Aspectos metodológicos relacionados con el análisis del PGV 35
 4.1.2.5. Resultados del análisis del PGV .. 35
 4.1.2.6. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento .. 36
 4.1.2.7. Seguimiento de propuestas de mejora (PM) ... 36
 4.1.2.8. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento .. 36
 4.1.2.9. Revisiones de los documentos soporte ... 36
 4.1.2.10. Gestión de la obsolescencia ... 37

Guía de inspección de gestión del envejecimiento y de operación a largo plazo de centrales nucleares
Primera Edición (Mayo de 2011)
4.1.2.11. Informes periódicos del PGV ... 37
4.1.2.12. Estado de las ESC .. 38

4.2. **Inspecciones durante la operación a largo plazo** 40

4.2.1. Inspecciones de planes de gestión del envejecimiento incorporados a la
renovación de la LO para la operación a largo plazo (PIEGE o PEV). (Inspección
tipo 3) .. 40

4.2.1.1. Objetivo de la inspección .. 40
4.2.1.2. Aspectos organizativos y de gestión .. 41
4.2.1.2.1. La estructura de la organización del explotador en relación con la
preparación del PIEGE .. 42
4.2.1.2.2. La adquisición y registro de informaciones relacionadas con la gestión del
envejecimiento ... 42
4.2.1.2.3. El seguimiento de los compromisos (condiciones, no conformidades,
requisitos regulatorios, etc.) aceptados y los introducidos por el OR 42
4.2.1.3. Alcance y selección de ESC ... 43
4.2.1.4. Resultados de la aplicación de la metodología del alcance y selección de ESC .. 44
4.2.1.5. Aspectos metodológicos relacionados con los análisis del PIEGE 44
4.2.1.6. Resultados del análisis del PIEGE .. 46
4.2.1.7. Proceso de identificación y resolución de GSI asociados a la gestión del
envejecimiento .. 49
4.2.1.8. Seguimiento de propuestas de mejora (PM) del PIEGE 49
4.2.1.9. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del
envejecimiento .. 50
4.2.1.10. Revisiones de los documentos soporte .. 50
4.2.1.11. Gestión de la obsolescencia ... 51
4.2.1.12. Análisis de envejecimiento en función del tiempo, AEFT 51
4.2.1.13. Contenido y etapas de un Proyecto de Extensión de Vida (PEV) para operación a
largo plazo ... 53
4.2.1.13.1. Fase I .. 55
4.2.1.13.2. Fase II .. 56
4.2.1.13.3. Fase III .. 57

4.2.2. Inspecciones rutinarias o periódicas de la aplicación del PIEGE o del PEV durante
la operación a largo plazo (PGV-LP). Inspección tipo 4 ... 62

4.2.2.1. Objetivo de la inspección .. 62
4.2.2.2. Aspectos organizativos y de gestión .. 63
4.2.2.3. Alcance y selección de ESC ... 63
4.2.2.4. Aspectos metodológicos relacionados con los análisis del PGV-LP 63
4.2.2.5. Resultados del análisis del PGV-LP ... 64
4.2.2.6. Proceso de identificación y resolución de GSI asociados a la gestión del
envejecimiento a largo plazo ... 64
4.2.2.7. Seguimiento de propuestas de mejora (PM) del PIEGE / PEV 64
4.2.2.8. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del
envejecimiento a largo plazo ... 64
4.2.2.9. Revisiones de los documentos soporte .. 65
4.2.2.10. Gestión de la obsolescencia ... 65
4.2.2.11. Análisis de envejecimiento en función del tiempo (AEFT) 65
4.2.2.12. Informes periódicos del PGV-LP .. 65
4.2.2.13. Estado de las ESC .. 66

REFERENCIAS .. 67
LISTA DE AUTORES Y REVISORES

ANEXO A. EVALUACIÓN DE LA SEGURIDAD; VERIFICACIÓN DE LA METODOLOGÍA Y LA EVALUACIÓN PERIÓDICA

ANEXO B. INSPECCIÓN REGULATORIA. INSPECCIÓN RUTINARIA PARA LA IDENTIFICACIÓN DE LA DEGRADACIÓN POR ENVEJECIMIENTO: VERIFICACIÓN DE LA DOCUMENTACIÓN Y LOS REGISTROS

ANEXO C. INSPECCIÓN REGULATORIA. INSPECCIÓN RUTINARIA PARA DEGRADACIÓN POR ENVEJECIMIENTO: INSPECCIÓN SOBRE EL TERRENO (“WALKDOWN”)

LISTA DE ILUSTRACIONES

Figura 1. Esquema de Alcance y Selección de ESC importantes para la seguridad o de relevancia económica para ser tratados en un PGV de una central CANDU

Figura 2. Esquema de Alcance y Selección de ESC para un PGV de una central PWR, BWR o PHWR con vasija

Figura 3. Fases de un proceso de gestión de vida en una central nuclear CANDU

Figura 4. Esquema básico de la Fase I del PGV para un PEV - CANDU

Figura 5. Esquema del Informe Integral de Estado de una central nuclear tipo CANDU

LISTA DE TABLAS

Tabla A. Aspectos objeto de inspección

Tabla B. Resumen de las etapas de un PGV consideradas para un PEV de una central nuclear CANDU

Tabla C. Aspectos a tener en cuenta en un informe de estado de una ESC
GUÍA DE INSPECCIÓN DE GESTIÓN DE ENVEJECIMIENTO
Y DE OPERACIÓN A LARGO PLAZO DE CENTRALES NUCLEARES

1. INTRODUCCIÓN

De acuerdo con la misión del Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares (FORO) entre los objetivos básicos de esta asociación destaca tanto promover un alto nivel de seguridad en las prácticas que utilicen materiales radiactivos y nucleares, como fomentar el intercambio de información y experiencia en materia de seguridad nuclear y protección radiológica.

Uno de los instrumentos que utiliza el FORO para el cumplimiento de estos objetivos es el desarrollo de proyectos técnicos, mediante la constitución de grupos de trabajo compuestos por expertos de los estados miembros.

En este contexto, el Plenario del FORO aprobó en 2008 el inicio del proyecto PREEV, Prácticas Reguladoras en Envejecimiento y Extensión de Vida, cuyo objetivo fundamental es mejorar la acción reguladora en lo concerniente a los programas de gestión de vida y a la operación a largo plazo en las centrales nucleares de los países de la región.

El proyecto fue desarrollado por un equipo integrado por expertos de Argentina (ARN), Brasil (CNEN), Chile (CCHEN), Cuba (CNSN), España (CSN) y México (CNSNS), asistidos por un oficial del OIEA, que proporcionó información al respecto desde el punto de vista de ese organismo. Asimismo, el equipo fue apoyado por otros expertos de los distintos países, que participaron en distintas actividades del proyecto.

Las tareas del proyecto PREEV se desarrollaron entre 2009 y 2010, habiéndose plasmado en la elaboración de un paquete documental, compuesto por cuatro guías para reguladores y una memoria técnica del proyecto. El propósito con que fueron concebidas las guías es que puedan ser utilizadas por cada país de la región, íntegramente o de forma parcial, y en la medida en que les fueran aplicables, tanto para el desarrollo de normativa propia como para el ejercicio de sus prácticas reguladoras. En cualquier caso, por su propio carácter de guías, no se pretende que sean documentos vinculantes. Por otra parte, si bien estas guías establecen las bases reguladoras esenciales en lo que respecta a gestión del envejecimiento y operación a largo plazo, se considera que para establecer una regulación completa en la materia es necesario incorporar requisitos de mayor grado de detalle, acordes con los aspectos específicos de cada país.

En cuanto al campo de aplicación específico del proyecto PREEV, debe destacarse, en primer lugar, que los organismos reguladores de la mayoría de los países del FORO habían ido requiriendo a los explotadores de las centrales nucleares la implantación de un proceso de gestión del envejecimiento, incluida la gestión en el caso de la extensión de su vida más allá de la vida de diseño, en los documentos sobre límites y condiciones de las licencias de operación.

En este contexto, la concepción del proyecto PREEV obedece a la conveniencia de establecer, con carácter general, los criterios a aplicar por los organismos reguladores para requerir la implantación de un sistema de gestión del envejecimiento de las estructuras, sistemas y componentes (ESC), incluyendo el caso de la operación a largo plazo, dotado de unas características que
aseguren que dicho sistema cumple los objetivos esperados, desde el punto de vista de la seguridad. Asimismo, se trató de establecer directrices generales para el desarrollo y ejecución de las prácticas reguladoras asociadas al licenciamiento, supervisión y control de los programas y actividades asociados.

Los documentos producto del proyecto PREEV están basados en los estándares del OIEA y en la normativa de los países más avanzados en tecnología nuclear. Están de acuerdo con los niveles de referencia establecidos por la Asociación de Reguladores Nucleares de Europa Occidental (WENRA). Son consistentes con el marco normativo de cada estado miembro representado en el proyecto y pretenden reflejar la experiencia obtenida de la práctica reguladora en cada uno de los países integrantes del equipo de proyecto.

En este contexto, el objeto del presente documento (“DT3”) es proporcionar una guía a los reguladores para la evaluación de las actividades de gestión de envejecimiento y de licenciamiento de extensión de vida de las centrales nucleares.

El resto de los documentos producto del proyecto son:

DT1: Guía de Criterios Reguladores para la Gestión del Envejecimiento y la Operación a Largo Plazo de Centrales Nucleares

DT2: Guía de Evaluación de Gestión de Envejecimiento y de Operación a Largo Plazo de las Centrales Nucleares

DT4: Guía para la Revisión Periódica de la Seguridad de las Centrales Nucleares aplicada a los aspectos de Gestión del Envejecimiento y Operación a Largo Plazo

DT5: Memoria Técnica del Proyecto

2. DEFINICIONES Y SIGLAS

Para los efectos de la presente guía, son de aplicación las definiciones siguientes:

a) **Análisis de envejecimiento en función del tiempo (AEFT):** Análisis y cálculos realizados por el titular de la central nuclear y que cumplen las siguientes condiciones:

 i) Están relacionados con las ESC consideradas dentro del alcance de la gestión del envejecimiento

 ii) Tienen en cuenta los efectos del tiempo y de la operación a largo plazo

 iii) Mantienen hipótesis de vida de diseño limitada

 iv) Demuestran la existencia o carencia de capacidad de las ESC para seguir funcionando, de acuerdo con sus funciones definidas, tras haber sobrepasado las hipótesis de vida de diseño limitada

 v) El cálculo o análisis fue considerado relevante en alguna evaluación de seguridad
vi) El cálculo o análisis forma parte de las condiciones de licencia actuales de la central

b) **Componentes activos:** Componente cuyo funcionamiento depende de un factor externo, tal como un accionamiento, un movimiento mecánico o el suministro de energía y que responde con un movimiento relativo de partes o un cambio de configuración.

c) **Componentes de larga vida:** Son aquellos componentes y estructuras que no están sujetos a reemplazo basado en una vida calificada o un período de tiempo especificado.

d) **Componentes pasivos:** Componente cuyo funcionamiento no depende de un factor externo, tal como un accionamiento, un movimiento mecánico o el suministro de energía y carece de partes con movimiento o susceptibles de cambiar de configuración.

e) **Condiciones de licencia:** Son el conjunto de requisitos de licenciamiento, requerimientos regulatorios y exenciones, derivados tanto de la normativa vigente en el momento de ser emitida la licencia de operación inicial, como de la normativa incorporada con posterioridad.

Las condiciones de licencia están recogidas en los documentos oficiales de operación de la central nuclear, en las condiciones asociadas a la aprobación de los mismos y a la licencia de operación, así como en los compromisos del titular de la licencia de operación para asegurar el cumplimiento de las bases de diseño de los sistemas de seguridad (incluyendo las modificaciones realizadas). Las condiciones de licencia deben ser actualizadas cada vez que se produzca alguna modificación del marco normativo que las afecte.

f) **Degradación por envejecimiento:** Es el proceso por el cual las características físicas de las ESC de las centrales nucleares se modifican, llevando a un cambio en su comportamiento, debido a fenómenos tales como exposición a la irradiación, transitorios cíclicos de alta temperatura, presión, o ataques por corrosión, entre otros.

g) **Efectos del envejecimiento:** Son los cambios netos en las características de una ESC, que ocurren con el tiempo o el uso, debidos a los mecanismos de envejecimiento.

h) **Envejecimiento:** Conjunto de procesos (o mecanismos) por los que las características de una ESC se degradan progresivamente con el tiempo o con el uso. Se puede manifestar tanto en envejecimiento físico como en obsolescencia.

i) **Envejecimiento físico:** El ocasionado por procesos físicos, químicos o biológicos (mecanismos de envejecimiento). Ejemplos de mecanismos de envejecimiento son el desgaste, la fragilización térmica o por radiación, la corrosión y el ensuciamiento microbioriológico.

j) **Especificaciones Técnicas:** Documento obligatorio que contiene los requisitos bajo los cuales se llevará a cabo la operación de la central nuclear, estableciendo, los límites, condiciones y vigilancias para operarla en una forma segura.

k) **Estructuras, sistemas y componentes (ESC):** Término genérico que abarca todos los elementos de una central nuclear.
i) Las *estructuras* son los elementos pasivos que sustentan, dan apoyo o alojan a otros elementos: edificios, obras civiles, blindajes, etc.

ii) Un *sistema* comprende varios componentes o estructuras montados de tal manera que desempeñan una función específica.

iii) Un *componente* es una combinación de piezas o partes que forman una unidad funcional simple, distingüible, que cumple una función específica en un sistema. Son ejemplos los cables, transistores, circuitos integrados, motores, relés, solenoídes, tuberías, bombas, vasijas, intercambiadores de calor, depósitos y válvulas.

l) **Estructuras, Sistemas y Componentes Críticas (ESCC):** Son todas aquellas estructuras, sistemas y componentes pertenecientes o no a los sistemas de seguridad, cuyo fallo puede afectar a la seguridad de una central nuclear, que además son condicionantes desde el punto de vista económico.

m) **Función propia:** Referida a una ESC, es aquella función que justifica que dicha ESC esté incluida en el alcance del proceso de gestión del envejecimiento.

Los criterios que permiten identificar las ESC con función propia son:

i) ESC que deben seguir funcionando, durante y después de cualquier suceso base de diseño que pudiera producirse, para garantizar las funciones siguientes:

 (1) la integridad de la barrera de presión del refrigerante del reactor,

 (2) la capacidad de parar el reactor y mantenerlo en una condición de parada segura; o

 (3) la capacidad de prevenir o mitigar las consecuencias de los accidentes, de modo que las exposiciones radiactivas fuera del emplazamiento se mantengan por debajo de los límites establecidos.

ii) ESC cuyo fallo podría impedir el cumplimiento satisfactorio de cualquiera de las funciones identificadas en el punto anterior.

iii) ESC, con los que se cuenta en los análisis de seguridad de la central nuclear y que están relacionados con los requisitos para la protección contra-incendios, calificación medioambiental, choque térmico a presión, transitorios sin parada automática del reactor y pérdida total de alimentación eléctrica.

n) **Gestión del envejecimiento:** Medidas técnicas, de operación o de mantenimiento destinadas a controlar dentro de límites aceptables la degradación por envejecimiento de estructuras, sistemas o componentes.

Ejemplos de medidas técnicas son el diseño, la calificación y el análisis de fallos. Ejemplos de medidas de operación son la vigilancia, la realización de procedimientos operacionales y la realización de mediciones ambientales.
o) **Grupos de componentes o “Commodities”:** Consisten en agrupaciones de componentes o estructuras con características similares que hacen posible la realización de un análisis único de gestión del envejecimiento, válido para todos ellos.

Los criterios de agrupación pueden fundamentarse en la existencia de diseños similares, materiales comunes, mismo tipo de componentes, la aplicación de prácticas similares de gestión del envejecimiento, o el hecho de estar sometidos a un mismo ambiente interno o externo.

p) **Informe de Seguridad (IS):** Documento oficial de la instalación que presenta la información necesaria y suficiente para que el Organismo Regulador pueda llevar a cabo la revisión independiente de una central nuclear desde el punto de vista de la seguridad nuclear y la protección radiológica, así como un análisis y evaluación de riesgos derivados del funcionamiento de la instalación, tanto en régimen normal como en condiciones de accidente. Contiene también descripciones detalladas de las funciones de seguridad de todos los sistemas de seguridad y de las ESC relacionadas con la seguridad, de sus bases de diseño y de su funcionamiento en todos los estados operativos, incluyendo la parada y las condiciones de accidente. Asimismo, identifica los reglamentos, códigos y normas aplicables a la central nuclear. También suele denominarse mediante las siglas en inglés SAR o FSAR, (Final) Safety Analysis Report.

q) **Obsolescencia:** Es el proceso de convertirse algo en anticuado debido a la evolución de los conocimientos o de la tecnología o a los cambios en la reglamentación o normativa. Son ejemplos del efecto de la obsolescencia (o envejecimiento no físico): la ausencia de elementos de seguridad eficaces o de criterios de diseño de seguridad (tales como: diversidad, separación o redundancia), la no disponibilidad de repuestos, la incompatibilidad entre equipos nuevos y viejos o la existencia de documentación anticuada o que no satisface la normativa vigente.

r) **Operación a largo plazo:** Operación continuada de la central nuclear manteniendo un nivel de seguridad aceptable, más allá de su vida de diseño, tras realizar una evaluación de seguridad que asegure que se mantienen los requisitos de seguridad aplicables a las ESC de la misma, implementando las mejoras necesarias. También se conoce por las expresiones extensión de vida o alargamiento de vida.

La evaluación de seguridad que fundamente la operación a largo plazo de la central nuclear ha de incluir, junto con la revisión de la gestión del envejecimiento para el nuevo periodo, la revisión de los análisis de seguridad considerando una vida útil superior a la vida de diseño de la central nuclear en la que se evalúe si las conclusiones de estos análisis son válidas teniendo en cuenta el mayor periodo de operación.

s) **Plan de Gestión de Vida (PGV):** Programa de acciones que tiene como objetivo alcanzar la vida de diseño original, sin deterioro de la seguridad, y mantener abierta la posibilidad de renovar la licencia de operación de la central nuclear, para su operación a largo plazo. En los últimos tiempos esta denominación se aplica para reactores de tecnología CANDU; anteriormente se utilizaba la denominación Programa de Manejo / Gestión del Envejecimiento (PME/PGE), cuya metodología era parecida.
Un Plan de Gestión de Vida debe integrar y, si es necesario, complementar, todas las actividades relacionadas con la evaluación y control de los mecanismos de envejecimiento que afecten a las ESC, pasivos y de larga vida, importantes para la seguridad.

t) **Plan de Gestión de Vida a Largo Plazo (PGV-LP):** Conjunto de Programas de Gestión del Envejecimiento vigentes durante la operación a largo plazo, encaminados a la vigilancia, control y mitigación de los mecanismos de envejecimiento y degradación que afectan a las ESC comprendidas dentro del alcance del proceso de gestión del envejecimiento.

Los efectos de envejecimiento, mecanismos de degradación, y programas de gestión asociados dentro del alcance de este Plan serán, tanto los identificados en el PIEGE, como otros que puedan surgir como consecuencia de la experiencia operativa propia o ajena, modificaciones de diseño, resultados de proyectos de investigación, etc., durante el período de operación a largo plazo.

El PGV-LP debe contemplar un procedimiento formal de identificación e implantación de propuestas de mejora y análisis de modificaciones de diseño.

u) **Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE):** Conjunto de análisis de gestión del envejecimiento que cubren las tres etapas clásicas de alcance y selección de ESC, identificación de efectos de envejecimiento y mecanismos de degradación, y definición de programas de gestión del envejecimiento. Incluye también los análisis de envejecimiento en función del tiempo (AEFT) que sean necesarios para la revisión de los análisis realizados con hipótesis de vida de diseño definida.

v) **Programas de Gestión del Envejecimiento (PGE):** Conjunto estructurado de actividades encaminadas a la vigilancia, control y mitigación de los efectos del envejecimiento que afectan a las ESC comprendidas en el alcance del proceso de gestión del envejecimiento. Los programas de gestión se basan en prácticas diversas de mantenimiento predictivo, preventivo y correctivo, programas de calificación ambiental, pruebas periódicas y vigilancias de las Especificaciones Técnicas de Funcionamiento (ETF), programas de inspección en servicio, programas de erosión-corrosión, etc., así como cualquier otra actividad de tipo específico con el mismo fin que pudiera realizarse en la central nuclear.

w) **Propuesta de Mejora (PM):** Son necesidades concretas de mejora asociadas a un determinado programa de gestión del envejecimiento, y que han sido evidenciadas al comparar el mismo con un programa estándar de referencia (por ejemplo, los del informe GALL - NUREG-1801 - de la USNRC), o bien al realizar su evaluación de forma genérica mediante el análisis de sus atributos. En algunas ocasiones, las mejoras pueden estar relacionadas sólo con el alcance del programa ("mejoras de alcance"), las cuales suelen surgir al realizar los distintos estudios de gestión del envejecimiento o al ser necesaria la aplicación de un determinado programa de gestión del envejecimiento a un nuevo grupo de componentes o estructuras, lo que supone la ampliación del alcance del mismo.

x) **Proyecto de Extensión de Vida (PEV):** La extensión de la vida de operación segura de una central nuclear más allá de su vida de diseño. Esto involucra el reemplazo o reacondicionamiento de los componentes principales o modificaciones sustanciales, o ambas.
y) **Revisión Periódica de la Seguridad (RPS):** Reevaluación sistemática de la seguridad de una central nuclear llevada a cabo a intervalos regulares (usualmente, cada 10 años), para determinar el impacto en la instalación de los efectos acumulativos del envejecimiento, las modificaciones, la experiencia operacional, los desarrollos técnicos y los aspectos del emplazamiento, y que tiene por objeto garantizar un alto nivel de seguridad a lo largo de la vida operacional de la instalación.

z) **Vida de diseño:** Intervalo de tiempo durante el que se espera que una central nuclear o un componente se comporte conforme a la especificación técnica de acuerdo con la cual se construyó o fabricó.

En la mayoría de las centrales nucleares de diseño occidental, parte de los análisis que dan soporte a la evaluación de seguridad de la planta se han realizado con la hipótesis de una vida de diseño de 30 o 40 años, por ejemplo, aquellos componentes que no pueden ser reemplazados, como la vasija del reactor y el edificio de contención, por lo que habitualmente se consideran 30 o 40 años como vida de diseño de la central nuclear.

aa) **Vida útil:** Intervalo de tiempo que transcurre desde que una estructura, sistema o componente empieza a funcionar hasta que se retira definitivamente del servicio. También se denomina vida de servicio.

La vida útil puede ser mayor que la vida de diseño, siempre que las condiciones reales de operación hayan sido menos severas que las supuestas en el diseño. Mediante la comparación entre las condiciones de diseño y las condiciones reales de operación puede determinarse el margen de vida remanente que le queda a una ESC.

En la presente guía, se utilizan además las siglas siguientes:

A) AEFT: Análisis de Envejecimiento en Función del Tiempo
B) AMAT: Ageing Management Assessment Teams (del OIEA)
C) APS: Análisis Probabilista de Seguridad
D) ARN: Autoridad Regulatoria Nuclear, de Argentina
E) BWR: Boiling Water Reactor
F) CANDU: Canadian Deuterium Uranium Reactor
G) CCHEN: Comisión Chilena de Energía Nuclear
H) CFR: Code of Federal Regulations (de Estados Unidos de América)
I) CNEN: Comissão Nacional de Energia Nuclear, de Brasil
J) CNSC: Canadian Nuclear Safety Commission (organismo regulador de Canadá)
K) CNSN: Centro Nacional de Seguridad Nuclear, de Cuba
L) CNSNS: Comisión Nacional de Seguridad Nuclear y Salvaguardias, de México
M) CSN: Consejo de Seguridad Nuclear, de España
N) DT: Documento Técnico (del proyecto PREEV)
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>O)</td>
<td>ESC: Estructuras, sistemas y componentes</td>
</tr>
<tr>
<td>P)</td>
<td>ESCC: ESC críticas</td>
</tr>
<tr>
<td>Q)</td>
<td>FORO: Foro Iberoamericano de Organismos Reguladores, Radiológicos y Nucleares</td>
</tr>
<tr>
<td>R)</td>
<td>GALL: Generic Ageing Lessons Learned (de la USNRC)</td>
</tr>
<tr>
<td>S)</td>
<td>GSI: Generic Safety Issue (tema genérico de seguridad, de la USNRC)</td>
</tr>
<tr>
<td>T)</td>
<td>I&C: Instrumentación y control</td>
</tr>
<tr>
<td>U)</td>
<td>IS: Informe de Seguridad</td>
</tr>
<tr>
<td>V)</td>
<td>LO: Licencia de Operación</td>
</tr>
<tr>
<td>W)</td>
<td>LRR: Licensing Renewal Rule (de la USNRC)</td>
</tr>
<tr>
<td>X)</td>
<td>MD: Modificación de Diseño</td>
</tr>
<tr>
<td>Y)</td>
<td>NEI: Nuclear Energy Institute (de Estados Unidos de América)</td>
</tr>
<tr>
<td>Z)</td>
<td>NPP: Nuclear Power Plant</td>
</tr>
<tr>
<td>AA)</td>
<td>NRS: No Relacionado con la Seguridad Nuclear</td>
</tr>
<tr>
<td>BB)</td>
<td>NUREG: Nuclear Regulatory Document (de la USNRC)</td>
</tr>
<tr>
<td>CC)</td>
<td>OIEA: Organismo Internacional de la Energía Atómica</td>
</tr>
<tr>
<td>DD)</td>
<td>OR: Organismo Regulador</td>
</tr>
<tr>
<td>EE)</td>
<td>PEV: Plan de Extensión de Vida</td>
</tr>
<tr>
<td>FF)</td>
<td>PGDE: Programa de Gestión de la Degradación por Envejecimiento (CANDU)</td>
</tr>
<tr>
<td>GG)</td>
<td>PGE: Plan de Gestión del Envejecimiento</td>
</tr>
<tr>
<td>HH)</td>
<td>PGV: Plan de Gestión de Vida</td>
</tr>
<tr>
<td>II)</td>
<td>PGV-LP: Plan de Gestión de Vida a Largo Plazo</td>
</tr>
<tr>
<td>JJ)</td>
<td>PHWR: Pressurized Heavy Water Reactor</td>
</tr>
<tr>
<td>KK)</td>
<td>PIEGE: Plan Integrado de Evaluación y Gestión del Envejecimiento</td>
</tr>
<tr>
<td>LL)</td>
<td>PM: Propuesta de Mejora</td>
</tr>
<tr>
<td>MM)</td>
<td>PMS: Programa de Mejora de la Seguridad</td>
</tr>
<tr>
<td>NN)</td>
<td>PREEV: Prácticas Reguladoras en Envejecimiento y Extensión de Vida</td>
</tr>
<tr>
<td>OO)</td>
<td>PWR: Pressurized Water Reactor</td>
</tr>
<tr>
<td>PP)</td>
<td>RD: Documento Regulador (de la CNSC)</td>
</tr>
<tr>
<td>QQ)</td>
<td>RG: Guía Reguladora (de la USNRC)</td>
</tr>
<tr>
<td>RR)</td>
<td>RM: Regla de Mantenimiento</td>
</tr>
<tr>
<td>SS)</td>
<td>RPS: Revisión Periódica de Seguridad</td>
</tr>
<tr>
<td>TT)</td>
<td>RS: Relacionado con la Seguridad Nuclear</td>
</tr>
<tr>
<td>UU)</td>
<td>SRP: Standard Review Plan (de la USNRC)</td>
</tr>
</tbody>
</table>
3. OBJETIVOS Y ALCANCE

3.1. Objetivo

La presente guía tiene como objetivos proporcionar directrices para inspeccionar los aspectos de seguridad relativos a la gestión del envejecimiento de las centrales nucleares, de manera que se pueda comprobar que los titulares de la licencia de operación (LO) o explotadores de las mismas las operan de forma segura hasta el final de su vida útil.

Se abordan los temas relacionados con la inspección de la gestión del envejecimiento, los proyectos de extensión de vida y la gestión del envejecimiento a largo plazo de forma genérica. En ocasiones se señalan singularidades que se tienen en cuenta en algunos de los países que han participado en su elaboración.

Gran parte de las diferencias a la hora de encarar estos temas se debe a las diferencias tecnológicas y a las diferentes metodologías desarrolladas en los países diseñadores y fabricantes de las centrales nucleares.

Las inspecciones a realizar en las distintas fases de la vida de la central nuclear, junto con las evaluaciones que se describen en el DT2, tendrán como objetivos la verificación de los siguientes aspectos:

a) Si la central nuclear puede alcanzar la vida de diseño original, sin deterioro de la seguridad, evitando la degradación imprevista de las estructuras, sistemas y componentes (ESC) de la central nuclear encuadradas dentro del alcance del proceso de gestión del envejecimiento, que se define más adelante.

b) Si se ha establecido un programa de vigilancia, control y mitigación del envejecimiento durante la vida de diseño original, que permita alcanzar la vida técnico – económica definida por el explotador para la central nuclear.

c) Si la planificación y sistematicidad de la gestión del envejecimiento establecida para la operación a largo plazo permite garantizar, de forma razonable, la funcionalidad de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento.

d) Si durante el período de operación a largo plazo (extensión de vida), se realizan las actividades necesarias de gestión del envejecimiento que permiten garantizar, de modo razonable, la vigilancia, control y mitigación de los mecanismos de envejecimiento de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento, evitando su degradación imprevista y por tanto un deterioro de la seguridad.

Además, la presente guía define las inspecciones que deberá llevar a cabo el organismo regulador (OR) para licenciar la operación a largo plazo de las centrales nucleares.
3.2. **Alcance de la guía**

Esta guía aborda:

a) La inspección de todas las etapas que comprenden el Plan de Gestión de Vida (PGV) durante la vida de diseño de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento.

b) Los elementos claves que deben ser considerados y que deberán ser inspeccionados al establecer el alcance, planificación y ejecución de un Proyecto de Extensión de Vida, PEV (típico de las centrales nucleares CANDU) o durante el proceso de renovación de la LO en caso de superarse la vida de diseño de la central nuclear, programa conocido como Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE), en el caso de las centrales nucleares de diseño estadounidense.

c) La inspección de los Planes de Gestión de Vida a Largo Plazo (PGV-LP) que integran los diversos Programas de Gestión del Envejecimiento (PGE) vigentes durante el período de operación a largo plazo.

Dichas inspecciones comprenden los puntos siguientes:

A) El alcance, los requisitos, las metodologías y los resultados de las evaluaciones de envejecimiento.

B) La aceptabilidad del alcance de las tareas de reacondicionamiento y las mejoras a la seguridad propuestas por el explotador.

C) Verificar que las tareas a ser ejecutadas para implementar las mejoras han sido apropiadamente planeadas considerando los aspectos relacionados con la seguridad radiológica y nuclear.

D) Verificar una apropiada ejecución de los trabajos relacionados con las mejoras.

E) Verificar que se ha actualizado la documentación de cumplimiento obligatorio considerando el período extendido de operación.

Esta guía sólo contempla aquellos aspectos relacionados con la seguridad radiológica y nuclear.

4. **INSPECCIONES REGULATORIAS**

La actividad de inspección regulatoria de todas las etapas que comprenden el Plan de Gestión de Vida, PGV, tanto durante la vida de diseño de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento, como durante el proceso de renovación de la LO en caso de superarse esa vida de diseño y la propia operación a largo plazo hasta el final de la vida útil, conlleva la realización de los siguientes tipos de inspecciones.

a) **Inspecciones durante la vida de diseño:**
i) **Inspecciones durante la implantación de un PGV (Inspecciones tipo 1)**, con objeto de verificar el desarrollo de un PGV de la central nuclear.

ii) **Inspecciones rutinarias o periódicas del PGV (Inspecciones tipo 2)**, cuyos objetos son: verificar la aplicación, actualización del control y el mantenimiento de los Programas de Gestión del Envejecimiento (PGE) que componen el PGV, y verificar la situación de una muestra de las ESC desde la perspectiva de los PGE, que incluya las actividades de verificación documental y las actividades en el campo (“walkdowns”).

b) **Inspecciones durante la operación a largo plazo:**

i) **Inspecciones del Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE) y del Proyecto de Extensión de Vida (PEV), incorporados a la renovación de la LO a largo plazo (Inspecciones tipo 3)**, cuyo objeto básico es verificar el desarrollo y el contenido de la gestión del envejecimiento de la central nuclear para la aplicación durante su operación a largo plazo.

ii) **Inspecciones rutinarias o periódicas de la aplicación del PIEGE o del PEV durante la operación a largo plazo (PGV-LP) (Inspecciones tipo 4)**, cuyos objetos son: verificar la aplicación de la actualización y el mantenimiento de los PGE establecidos en el PIEGE o PEV, de acuerdo con el PGV-LP, así como continuar la verificación de la situación de una muestra de las ESC desde la perspectiva de los PGE, que incluya las actividades de verificación documental y las actividades en el campo (“walkdowns”) durante la operación a largo plazo.

El cuadro de la página siguiente (Tabla A) presenta los temas objeto de inspección durante la vida de diseño, en el proceso de la renovación de la LO y durante la operación a largo plazo.

Los objetivos específicos del proceso son:

A) Definir y establecer un proceso para realizar la valoración de la seguridad inspeccionando el contenido de los PGV de la central nuclear durante la LO vigente, considerando también las posibles solicitudes de operación a largo plazo, con el fin de verificar que:

i) El tiempo de vida establecido en la LO se puede alcanzar sin que ocurra una degradación imprevista de las ESC de la central nuclear.

ii) Existen programas de vigilancia, control y mitigación de la degradación por envejecimiento, de modo que se alcancen los respectivos períodos de la LO solicitada para el funcionamiento normal durante la vida de diseño y de la LO solicitada para la operación a largo plazo, definidos sobre las bases del proyecto y aprobados por el OR.

B) Establecer los requisitos de inspección para verificar la condición material de las ESC que han de incluirse en el PGV.

C) Verificar que la información necesaria para el análisis del PGV está disponible, es trazable, auditable y compatible con los programas y procedimientos del explotador ya aprobados.
Tabla A. Aspectos objeto de inspección.

<table>
<thead>
<tr>
<th>Aspectos objeto de inspección</th>
<th>Vida de Diseño</th>
<th>Renovación de la LO</th>
<th>Operación a Largo Plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspectos organizativos y de gestión</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alcance y selección de ESC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Resultados de la aplicación de alcance y selección de ESC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Análisis de revisión de la gestión del envejecimiento</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Resultados de la aplicación de los PGE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Proceso de identificación y resolución de Generic Safety Issue (GSI) aplicables a la instalación</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de Propuestas de Mejora (PM)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de Modificaciones de Diseño (MD) y sustituciones de equipos relacionados con la gestión del envejecimiento</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de revisiones de documentos soporte</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gestión de la obsolescencia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Análisis de Envejecimiento en Función del Tiempo (AEFT)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Informes periódicos</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Estado de ESC</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = tema aplicable

Para ello el OR deberá realizar las actividades generales de inspección siguientes:

1) Verificar que los informes de evaluación de la aplicación del PGV, incluido el alargamiento de la vida útil durante la operación a largo plazo, muestran la situación real de la central nuclear y que están completos.

2) Analizar los informes del estado de las ESC incluidas en el alcance de la gestión del envejecimiento, verificando que la metodología de análisis es apropiada.

3) Valorar si las inspecciones técnicas y la recogida de datos realizadas por el explotador son adecuadas y si el personal que las realiza tiene las habilidades y el entrenamiento necesarios.

4) Identificar las recomendaciones y modificaciones importantes para la seguridad en la gestión del envejecimiento de las ESC.

5) Realizar el seguimiento de la implantación y ejecución de las recomendaciones, modificaciones o propuestas de mejora.

6) Verificar si se debe exigir, en caso necesario, un aumento en la frecuencia y/o en la extensión de la inspección para ciertas ESC específicas.
Para cada ESC debe hacerse un seguimiento permanente, utilizando datos de la operación, del mantenimiento, de la inspección y pruebas en servicio, de los programas de vigilancias periódicas, de la experiencia operativa, etc.

4.1. **Inspecciones durante la vida de diseño**

4.1.1. Inspecciones durante la implantación del Plan de Gestión de Vida (PGV) (Inspección tipo 1)

Un PGV o plan de gestión del envejecimiento debe incluir la estrategia básica de gestión, por parte de la organización del explotador, del envejecimiento de las ESC durante la vida de diseño de la central nuclear y permitir por lo menos la detección, medición y control del envejecimiento natural y la obsolescencia de las ESC, así como las causadas por la operación en condiciones adversas o severas.

Debe observarse que el número de etapas, o fases, de un PGV depende de la metodología utilizada por la organización del explotador. Cabe mencionar también que en la mayoría de los países miembros del OIEA se considera el PGV como un documento de cumplimiento obligatorio. En este caso, el OR deberá establecer un determinado periodo para la ejecución de las actualizaciones del referido plan. Estos periodos varían normalmente entre uno y cinco años.

El PGV se complementa y desarrolla con informes periódicos, donde deben estar listadas las principales actividades de gestión del envejecimiento, desarrolladas durante el periodo de interés o evaluación, siguiendo los criterios y la metodología propuesta en el PGV. El DT1 proporciona directrices sobre estos aspectos.

A continuación, se muestra una descripción de los contenidos básicos para el desarrollo de un PGV.

El primer paso del PGV es el desarrollo de políticas y estrategias, planes y procedimientos que delinean las reglas básicas para llevar a cabo su implementación en la central nuclear. El desarrollo de esta etapa se constituye en el análisis de las ESC mediante la definición de métodos y procedimientos de control, inspección, pruebas, vigilancias, etc. Estos controles deben estar basados en programas actualizados, existentes y disponibles en la central nuclear. Estas tareas requieren un análisis preliminar, por parte del inspector, para asegurar que todas las ESC y los efectos del envejecimiento que les pueden aplicar están siendo considerados.

El PGV está soportado por documentos específicos que contienen los detalles de las distintas etapas de la gestión del envejecimiento. Es común que el PGV contenga, en documentos soporte y como referencias, un conjunto de informes sobre el alcance y selección de ESC; el estudio de los fenómenos degradatorios aplicables; el estudio de las prácticas de control, inspección, pruebas, vigilancias, etc. existentes en la central, y el listado de mejoras a implantar como consecuencia de los pasos anteriores del proceso.

4.1.1.1. **Objetivo de la inspección**

El objetivo fundamental en las inspecciones de tipo 1 es verificar el desarrollo de un PGV de la central nuclear durante la vida de diseño de sus ESC, comprobando los aspectos de:
a) El ámbito de aplicación, con el alcance y selección de componentes críticos (mecánicos; eléctricos; de instrumentación y control, I&C; estructurales).

b) El análisis de los fenómenos del envejecimiento, los mecanismos de degradación y los efectos de los mismos, a partir de los materiales y ambientes existentes en la instalación.

c) Los programas de gestión del envejecimiento (PGE).

Dependiendo de la etapa en que esté la central nuclear, deberán ser inspeccionadas una variedad de ESC relacionadas con el PGV. Cabe decir que en algunos casos, éstas pueden ser similares en las diferentes fases, mientras que otros aspectos serán específicos de una determinada etapa en particular (por ejemplo, los PGE).

Estos objetivos se desarrollan en los apartados 4.1.1.2 a 4.1.1.11.

4.1.1.2. Aspectos organizativos y de gestión

Los principales aspectos a inspeccionar son:

4.1.1.2.1. La estructura de la organización del explotador en relación a la gestión del envejecimiento.

En esta parte de la inspección el objetivo particular es identificar la organización, grupo, comité, etc. establecido en la central nuclear que sea responsable de realizar los aspectos del PGV, de acuerdo a:

a) Composición

Debe comprobarse que el grupo esté formado, de preferencia, por expertos en diversas disciplinas y actividades relacionadas con los PGE. Para orientación se enumeran a continuación algunos ejemplos de disciplinas o actividades relacionadas con los PGE:

i) Operación;

ii) Mantenimiento (mecánico, eléctrico, I & C, civil, etc.);

iii) Regla de mantenimiento (RM);

iv) Modificaciones de diseño (MD);

v) Programas de Inspección en Servicio;

vi) Calificación ambiental;

vii) Pruebas en servicio y ensayos periódicos (vigilancias);

viii) Experiencia operativa;

ix) Ingeniería (investigación y desarrollo).
b) Funcionamiento

Sobre esto la inspección debe verificar:

i) Las funciones y actividades desarrolladas por estos grupos;

ii) La relación jerárquica existente;

iii) La frecuencia de las reuniones, los temas tratados y las decisiones adoptadas (actas de reunión);

iv) La existencia de personas de la organización responsable de los aspectos prácticos relacionados con los PGE;

v) La disponibilidad de recursos adecuados y suficientes;

vi) Si las responsabilidades de todos los niveles están claramente determinadas y definidas;

vii) Si el personal que participa en las actividades de gestión del envejecimiento, proporciona y dispone de los conocimientos necesarios acerca de los detalles de estos aspectos.

Se deberá verificar que en el PGV y en el informe periódico de ejecución del mismo se presentan informaciones sobre todas las cuestiones anteriores, a través de averiguaciones realizadas durante las inspecciones, llevadas a cabo por el OR, relacionadas con la gestión del envejecimiento.

4.1.1.2.2. La adquisición y registro de informaciones relacionadas con la gestión del envejecimiento.

Acorde con la guía de seguridad NS-G-2.10 [2] del OIEA, punto 4 y el DT4, el explotador deberá contar con un sistema de adquisición y registro sistemático de datos que den soporte a los PGE.

Por tanto, en las inspecciones debe llevarse a cabo la valoración de este sistema (datos, análisis, etc.), verificando sus características principales y su eficacia.

Este sistema debe ser establecido en el inicio de la vida de la central nuclear para proporcionar un histórico de datos completos. Esta información es esencial para tomar decisiones de modo que se evite la pérdida de funcionalidad de algunos de los equipos. Entre otros, puede mencionarse que los datos registrados deben estar relacionados con las diferentes etapas de la gestión.

Estos datos obtenidos como resultado de las pruebas, inspecciones, vigilancias y controles sobre la aplicación práctica de los PGE, son especialmente importantes, dado que estas informaciones permitirán un diagnóstico de los componentes y estructuras, y además establecer una estrategia de gestión que preserve su funcionalidad.
También deberá comprobarse la calidad de la documentación, tanto desde el punto de vista metodológico como de los resultados del análisis. Estos deberán ser debidamente documentados, puesto que estarán sujetos al control de los sistemas de garantía de la calidad de la central nuclear.

4.1.1.2.3. El seguimiento de los compromisos (condiciones, no conformidades, requisitos regulatorios, etc.) aceptados y los introducidos por el OR.

Deberá identificarse el grado de progreso y avance (o la solución finalmente dada por la organización del explotador), en relación a los compromisos asumidos o impuestos, comparándolo con la información obtenida en inspecciones precedentes.

Para este fin, además de las informaciones proporcionadas en los informes periódicos, serán de esencial importancia las obtenidas durante la propia inspección.

4.1.1.3. Alcance y selección de ESC

Varias ESC de una central nuclear pueden ser reemplazadas durante la operación normal de la instalación, por ser fácilmente sustituibles, pero hay otras cuya sustitución durante su vida de diseño puede envolver dificultades técnicas, altos costos económicos y/o de dosis al personal.

Para evitar estas situaciones es importante que el explotador, antes del desarrollo del PGV, realice estudios para la identificación (alcance del PGV) y selección de las ESC, estableciendo también un sistema de priorización de estas ESC. Estas tareas serán verificadas durante el proceso de inspección.

En la práctica internacional, hay diferentes metodologías para determinar el alcance y la selección de las ESC, importantes para la seguridad, o que sean de relevancia económica para la central nuclear, tal como se describe en el apartado 4.3.3 del DT2. Es importante mencionar que la inspección deberá incidir sobre las ESC dentro de dicho alcance, tal como se define en el DT1, apartado 5.

El proceso deberá ser iniciado por medio de la identificación de las ESC consideradas en la metodología establecida por el explotador, para realizar sus análisis de alcance y selección de las ESC importantes para la seguridad. Esta información deberá ser enviada al OR, dentro de un plazo especificado, que tras su evaluación conforme al proceso indicado en el DT2, las aceptará o establecerá sus condicionantes y/o recomendaciones.

El objetivo final, en este proceso, es definir de manera adecuada las ESC que están inscritas en el ámbito del PGV, en conformidad con la metodología previamente definida. La información resultante deberá estar organizada por ESC.

Se espera que cada ESC dentro del alcance del PGV esté identificada con un nombre específico o código. Esto facilitará la verificación de los elementos presentes y ausentes en la lista final.

El explotador deberá presentar una lista de las ESC dentro del alcance de la gestión del envejecimiento, que habrá de ser aprobada por el OR antes de su inclusión definitiva en el PGV. El OR podrá adicionalmente establecer la necesidad de inclusión de otras ESC que no fueron consideradas por el explotador inicialmente, lo cual podrá ser verificado en una inspección.
Los principales aspectos que serán inspeccionados son:

a) El alcance y la selección de las ESC que serán sometidas al proceso del PGV.

b) El resultado del proceso de aplicación de la metodología para las diferentes ESC de la central nuclear.

En la verificación, por los inspectores, de los aspectos citados anteriormente, debe valorarse el uso de los documentos regulatorios que forman parte de las condiciones de licencia de la central nuclear, como por ejemplo:

A) Informe de seguridad (IS), bases de proyecto, especificaciones técnicas, procedimientos de operación normal, anormal y de emergencia e incluso las guías o procedimientos de gestión de accidentes severos;

B) Informes de calificación de los equipos con clase sísmica;

C) Informes relacionados con los sucesos externos naturales, tales como inundaciones, tormentas, huracanes, tornados, terremotos, tsunamis, así como sucesos internos tales como riesgos de incendios, inundaciones internas, etc.;

D) Análisis probabilístico de seguridad (APS) para identificar ESC importantes desde el punto de vista del riesgo;

E) Estudio o análisis de calificación ambiental de los equipos eléctricos y de I&C;

F) Informes técnicos, presentados al OR, que tratan de fenómenos tales como transitorios de choque térmico a presión, transitorios sin parada automática del reactor y la pérdida total de energía eléctrica;

G) Documentación asociada a la aplicación de la RM a equipos, cuando sea aplicable;

H) Diagramas y planos de los sistemas importantes para la seguridad;

I) Análisis de aplicación de nueva normativa.

A continuación se muestran dos ejemplos, sintetizados en esquemas, de metodologías de alcance y selección de ESC, en las Figuras 1 y 2. Previo al desarrollo del PGV, y acorde a los criterios de identificación y selección de las ESC, se establece un esquema de priorización de ESC importantes para la seguridad o de relevancia económica. El análisis de las ESC menos importantes supone un riesgo residual cuyo análisis no se muestra en la Figura 1.
Figura 1. Esquema de Alcance y Selección de ESC importantes para la seguridad o de relevancia económica para ser tratados en un PGV de una central CANDU.

4.1.1.4. Resultados de la aplicación de la metodología del alcance y selección de ESC

El objetivo en esta parte de la inspección es asegurar que la metodología para determinar el alcance y la selección se aplicó correctamente y que los resultados obtenidos son satisfactorios. Los aspectos relacionados con la idoneidad de la metodología empleada por el explotador y su desarrollo son más propios de las actividades de evaluación que de las de inspección; en el DT2 se recogen estos aspectos.

En consecuencia, a menos que los casos individuales lo justifiquen, la metodología a ser seguida por la inspección será la valoración de una muestra, es decir, la selección de un conjunto representativo de ESC en las cuales se hayan aplicado los criterios de alcance y selección.

El inspector deberá determinar y examinar la muestra inicial. Si los resultados no son satisfactorios, la muestra deberá ser aumentada. Los criterios para la definición de las muestras serán diferentes y en cualquier caso adaptados al tipo de ESC a ser inspeccionado, así como a la fase de vida en que la instalación se encuentre.

Algunos criterios generales que pueden ser aplicados en la determinación de muestras de inspección son la identificación de:

a) ESC particularmente importantes para la seguridad;
Figura 2. Esquema de Alcance y Selección de ESC para un PGV de una central PWR, BWR o PHWR con vasija.

b) ESC con mayor representatividad en las evaluaciones del APS;

c) ESC de categorías o tipos distintos, como por ejemplo, reactor e internos, sistemas principales, sistemas auxiliares mecánicos, eléctricos / I&C, etc.;

d) ESC recomendadas por la experiencia operativa;

e) ESC con condiciones de operación críticas o donde los materiales son particularmente vulnerables y los ambientes son más agresivos;

f) ESC con criterios de proyecto no totalmente demostrados en las pruebas;
g) ESC con múltiples funciones en la RM (si es aplicable) o en el apoyo a los sistemas múltiples;

h) ESC que no hayan sido inspeccionadas en el pasado;

i) ESC que fueron alteradas por cambios de diseño, reparaciones, etc.

A continuación se destacan los principales aspectos a inspeccionar:

A) Los resultados globales a nivel de los sistemas y estructuras complejas:

i) Contenido de la lista final de los sistemas y estructuras complejas.

Deben identificarse, a partir de la lista definitiva de los sistemas y estructuras complejas derivados del proceso, los sistemas y estructuras que claramente se espera que estén presentes debido a sus funciones de seguridad realizadas.

Como complemento a lo anterior, también se debe seleccionar un sistema o estructura que no aparezca en el listado, de modo que se verifique si realmente no realizan ninguna función específica de seguridad.

ii) Proceso para el establecimiento de sistemas y estructuras dentro del ámbito de aplicación.

Con el objetivo de verificar la correcta aplicación de la metodología deben seleccionarse los sistemas y estructuras en la lista final, verificando que se señala, en cada caso, la correcta identificación de sus funciones y por lo tanto, las partes del sistema y estructura dentro del ámbito de aplicación.

B) Los resultados a nivel de los componentes mecánicos:

Normalmente estos componentes pertenecen a todos los sistemas en las siguientes categorías:

i) Sistemas de refrigeración del reactor (vasija, internos, barrera de presión del sistema primario, tubos de presión, alimentadores, generadores de vapor, etc.);

ii) Sistemas de seguridad (sistema de rociado de la contención, sistema de aislamiento de la contención, sistema de inyección de alta presión, etc.);

iii) Sistemas auxiliares (sistemas de ventilación, contra-incendios, refrigeración, aire, etc.);

iv) Sistemas de vapor y de conversión de energía (sistema de turbina de vapor principal, sistema de condensado, etc.).

Para los componentes mecánicos, la inspección se centrará en realizar las siguientes comprobaciones:
1) Identificación de los componentes mecánicos dentro del ámbito de alcance y selección.

La inspección debe iniciarse con los sistemas pre-seleccionados para verificar la correcta identificación de los componentes individuales en el ámbito de aplicación basado en las funciones específicas que desempeñan.

Especial atención debe darse a los límites de la frontera, dentro y fuera del alcance de aplicación, así como aquellos que, aunque estén todavía dentro del alcance del sistema, el explotador haya considerado que no están dentro del alcance a este nivel. En este último caso se deben comprobar las bases que apoyan su inclusión.

Para los componentes identificados en este ámbito, hay que asegurarse de que en realidad son pasivos y de larga vida.

2) Caso especial de la agrupación.

Para situaciones en que el operador decida organizar los componentes en grupos o “commodities”, deben ser seleccionados varios de estos grupos y comprobado que algunos componentes importantes de la planta están en la lista de este grupo.

Deben ser seleccionadas ESC del tipo No Relacionadas con la Seguridad (NRS) en el ámbito de aplicación del criterio 5.b del DT1. Debe verificarse, a través del análisis del explotador, que los aspectos metodológicos relacionados con este enfoque se han aplicado correctamente para la obtención de resultados satisfactorios.

La revisión debe verificar que las ESC identificadas dentro de este ámbito son realmente pasivas y de larga vida.

3) Verificación específica de los criterios de selección.

Deben elegirse adicionalmente y de forma complementaria a las verificaciones anteriores, varios componentes en el ámbito de aplicación (es decir, con función individual definida) que no hayan sido seleccionados para su inclusión en el PGV, verificando que no se ajustan a ninguno de los criterios de selección (pasiva y larga vida), justificando debidamente su exclusión.

C) Resultados a nivel de estructuras y componentes estructurales:

Por lo general, las estructuras y componentes estructurales resultantes del proceso de alcance y selección deberán estar contempladas en una de las siguientes categorías:

i) Estructura de la contención primaria;

ii) Otras estructuras importantes, como por ejemplo la estructura del edificio de los generadores diesel de emergencia, los edificios auxiliares, el edificio de la turbina, etc.;
iii) Componentes estructurales, tales como bandejas de cables, soportes para tubería, elastómeros para reducir las vibraciones, soportes de equipos, soportes de conductos de ventilación, etc.;

iv) Estructuras no de clase de seguridad, pero cuyo fallo pueda impedir la función de seguridad de una estructura o un componente de seguridad, tales como estructuras de categoría sísmica II en relación con la categoría I.

Para los componentes estructurales, la inspección se centrará en llevar a cabo las siguientes comprobaciones:

1) Identificación de las estructuras y componentes estructurales dentro del alcance.

Las estructuras complejas se han identificado en el ámbito de aplicación, por ejemplo, la contención, comprobando que se han identificado correctamente las subestructuras y componentes estructurales de la misma con funciones individuales (cimentaciones, losas, muros de contención, bandejas de cables, soportes de tuberías, bordillos, bastidores, fuelles, revestimientos o “liners”, penetraciones mecánicas, sumideros, etc.) pertenecientes a la misma.

La función propia está claramente identificada en todos los casos y, basándose en la misma, se justifica su inclusión dentro del alcance.

2) Casos especiales de los grupos.

Si el explotador ha optado por organizar el análisis en grupos o “commodities”, deberá seleccionarse uno de los grupos de estructuras complejas para comprobar que algunos de los componentes estructurales se incluyen, dependiendo de sus funciones.

3) Verificación de la selección de los criterios.

Debe verificarse que la mayoría de las estructuras y componentes estructurales cumplen los criterios de selección, de forma que sean identificados como pasivos y de larga vida. La inspección se centrará en la justificación presentada por el explotador en caso de exclusiones de la lista de selección final.

D) Resultados a nivel de componentes eléctricos y de I&C:

Para los componentes eléctricos y de I&C, cuyos elementos típicos son los cables, barras de alimentación, conductores de alta tensión, penetraciones eléctricas, cables de tierra, conectores, aislantes, etc., la inspección se centrará en los siguientes aspectos:

i) Identificación de los componentes eléctricos y de I&C dentro del ámbito de aplicación y selección.

Varios sistemas eléctricos y de I&C deberán ser seleccionados para su verificación en el listado, de modo que se demuestre que fueron identificados correctamente según sus funciones individuales.
Debe verificarse además si estas ESC son pasivas y de larga vida.

ii) Caso especial de los grupos

En situaciones donde el explotador ha organizado los componentes en grupos especiales o “commodities” deben ser seleccionados varios de estos grupos y verificar que algunos componentes importantes, que están claramente dentro del ámbito de aplicación, están en la lista de los componentes de ese grupo, verificando asimismo que estas ESC son pasivas y de larga vida.

Para algunas ESC tipo NRS, que por su función propia característica deberían estar incluidas dentro del ámbito de aplicación del criterio 5.b del DT1, debe verificarse a través de chequeos que los aspectos metodológicos relacionados con este enfoque se han aplicado correctamente por el explotador, obteniendo resultados satisfactorios.

iii) Verificaciones asociadas al “análisis por áreas”

El “análisis por áreas” consiste en verificar, para un conjunto de componentes, pertenecientes a diversos sistemas eléctricos y de I&C, que están dentro del alcance, todos ellos con función propia, ubicados dentro de un mismo recinto o área y que superan las condiciones ambientales límite características de ese recinto. Cuando el explotador haya utilizado para la determinación del alcance la metodología del “análisis por áreas”, se seleccionará una o varias de las áreas dentro del alcance, comprobando que se han considerado aquellos componentes individuales que la integran.

Además, deberá seleccionarse una o más áreas no incluidas en el ámbito de aplicación, con el objetivo de comprobar que no existen en ellas componentes con funciones propias que cumplan los criterios de inclusión.

Con el fin de complementar las verificaciones anteriores, deben ser seleccionados varios elementos dentro del área, que no cumplan con los criterios de selección, para verificar que su exclusión esté debidamente justificada.

iv) Calificación ambiental

Debe verificarse que todas las ESC eléctricas y de I&C, que sean pasivas y de larga vida o tengan calificación ambiental, hayan sido identificadas correctamente. Estos componentes se incluirán y estudiarán posteriormente en los análisis AEFT correspondientes.

4.1.1.5. Aspectos metodológicos relacionados con los análisis del PGV

La inspección de la metodología empleada deberá abordar las siguientes cuestiones:

a) Criterios generales seguidos por el explotador para la definición de materiales y ambientes.
Debe garantizarse que los criterios y metodologías establecidos por el explotador, permiten obtener un conjunto de materiales y ambientes, tanto internos como externos, representativos de todos los casos en los diferentes modos de operación considerado en este análisis.

Debe inspeccionarse la documentación de apoyo utilizada por la organización del explotador, y las herramientas de soporte como por ejemplo, bases de datos y, en general, el tipo de análisis utilizados en la identificación de materiales y ambientes.

Por tanto deberá comprobarse que el explotador ha generado una clara y precisa definición de los materiales y ambientes, tanto internos como externos, para uso en el análisis.

b) Modos de operación considerados en el análisis.

Debe demostrarse que el explotador ha considerado los diferentes modos de operación importantes en el análisis del PGV, dado que éstos determinan los fenómenos de degradación que afectan a las ESC durante operación normal, pruebas funcionales periódicas, recarga de combustible, etc.

c) Evaluación de la experiencia operativa.

Debe verificarse que el explotador utiliza una metodología sistemática para la aplicación de la experiencia operativa, interna y externa (nacional e internacional) en la identificación de los mecanismos de degradación y los efectos del envejecimiento, así como en la definición de los PGE.

d) Documentos de referencia y otras fuentes de información.

Deben ser verificadas las fuentes específicas utilizadas por el explotador en la identificación de los mecanismos y los fenómenos de la degradación y el establecimiento de PGE.

Debe verificarse que el explotador considera en su análisis el desarrollo de programas, como por ejemplo, programas para obtención de información, programas genéricos, temas genéricos de la seguridad (G S), nuevos procedimientos de pruebas y ensayos, etc.

e) Proceso de definición de los mecanismos y fenómenos de degradación.

Debe verificarse el procedimiento específico seguido por el explotador en la asignación de fenómenos de degradación y efectos del envejecimiento.

Deben definirse grupos de materiales y ambientes que sean similares, ya que estos aspectos determinan los procesos de degradación actuantes. Por ello, cada grupo de ESC tendrá asociado un grupo de mecanismos y fenómenos de degradación.

Debe verificarse que el explotador considera la detección de ciertos elementos que son casos particulares derivados de circunstancias específicas, tales como zonas de flujo estancado, zonas de aceleración del flujo y ambientes especialmente agresivos, ya que hay componentes que pueden no cumplir los requisitos de su grupo por estar sometidos a mecanismos adicionales.
Debe verificarse que la metodología contempla la definición de los mecanismos de degradación y los efectos del envejecimiento en relación con las funciones que la ESC desempeña en el sistema.

Debe prestarse atención especial para las ESC que realizan diversas funciones. En tales casos, deben ser definidos los mecanismos y efectos de degradación específicos asociados a cada una de estas funciones.

Debe verificarse la existencia de justificaciones para la exclusión de las ESC que no se vean afectadas por los efectos del envejecimiento característicos de su grupo.

f) Definición de PGE.

Debe verificarse que el explotador utiliza una metodología que incluye la adopción de programas básicos con aplicaciones directas a la central nuclear, y programas específicos cuando sea necesario.

Debe verificarse que la estructura de estos programas incluirá como mínimo:

i) Una relación completa de las ESC con indicación de los materiales, ambientes y mecanismos asociados de degradación;

ii) Una descripción de los programas específicos de inspección, pruebas, vigilancia y control utilizados como base para el PGE;

iii) Relación de propuestas de mejora (PM) pendientes de solución e implantación.

g) Identificación de propuestas de mejoras (PM).

Debe verificarse que el explotador contempla la identificación sistemática de PM asociadas al PGE, y que éstas estén correctamente definidas y documentadas.

El proceso también debe generar PM del ámbito de aplicación (propuestas de “alcance”) cuando aparezcan nuevas ESC.

4.1.1.6. Resultados del análisis del PGV

Los resultados de la aplicación de esta metodología deberán ser inspeccionados. En general, respecto a la muestra de la inspección, es recomendable dar continuidad al proceso con las mismas ESC o agrupamientos (“commodities”) usados en la fase de alcance y selección.

Para verificar los aspectos específicos, deberán ser seleccionadas otras ESC más apropiadas al asunto a comprobar.

Los principales puntos que deberán ser inspeccionados son:

a) Verificación de la determinación de los materiales.
Esta parte de la inspección tiene por objeto garantizar que el conjunto de materiales considerados en el análisis son consistentes con los materiales existentes en la central nuclear.

Deben ser seleccionadas diversas ESC para verificar que la identificación de los materiales se ha realizado correctamente, inclusive a nivel de sub-componentes.

La información básica necesaria para realizar esta comprobación normalmente deberá estar contenida en la documentación del fabricante (catálogos), o en bases de datos disponibles sobre los componentes de la central. Por lo tanto, este punto ha de ser uno de los puntos de inspección más representativos de la gestión del envejecimiento.

b) Verificación de la determinación de los ambientes.

Esta parte de la inspección tiene por objeto garantizar que el conjunto de los ambientes internos y externos considerados en el análisis es representativo de los ambientes existentes en la planta. Deben ser seleccionadas varias ESC que hayan sido identificadas con más de un modo de operación significativo, para su análisis, verificando en cada caso que estos ambientes son correctos y que no haya ocurrido ninguna omisión.

c) Atribución de los mecanismos de degradación y los efectos del envejecimiento.

Esta parte de la inspección debe demostrar en la práctica la correcta atribución de los mecanismos de degradación y los efectos del envejecimiento de las ESC en el ámbito del PGV. La comprobación debe basarse en los siguientes aspectos:

i) Cuando el explotador ha definido grupos genéricos de material / ambiente, deben seleccionarse ESC múltiples del sistema objeto de la inspección, verificando la correcta asignación de los mecanismos de degradación y los efectos del envejecimiento determinados.

Debe ser seleccionada, de manera complementaria, alguna combinación de material / ambiente no considerada por el explotador que, a priori, no sea desechable por ser típica de instalaciones similares, verificando que no existe ninguna ESC en este caso.

ii) Deben seleccionarse múltiples ESC, objeto de la inspección, para probar de forma individual que los fenómenos de degradación y los mecanismos del envejecimiento identificados como aplicables son correctos y completos.

De los mecanismos de degradación que hayan sido adecuadamente identificados por la relación entre los elementos y los grupos material / ambiente, debe verificar-se que la ESC objeto de esta inspección pertenece a este grupo. Si esta metodología no se ha utilizado, los fenómenos y mecanismos de degradación identificados por el explotador se cuantificarán con el uso de referencias técnicas fiables y reconocidas.

Debe verificarse, frente a la selección de las ESC adecuadas, que el explotador ha identificado mecanismos de envejecimiento particulares, adicionales a los meca-
nismos generales para el grupo de ESC de que se trate. Por ejemplo, en el caso de un equipo o tubería sujeta al fenómeno de la erosión/corrosión, debido a la condición particular de su geometría (que se haya evidenciado como resultado de la experiencia operativa interna) se debería haber propuesto algún mecanismo adicional al de erosión/corrosión, o éste mismo pero con características más agravadas.

Debe verificarse que los fenómenos de degradación y los mecanismos de envejecimiento aplicables se han definido teniendo en cuenta las funciones específicas de las ESC.

Debe verificarse que el explotador presenta justificaciones técnicas para los fenómenos del envejecimiento que no hayan sido calificados como significativos en la lista de los fenómenos aplicables a los grupos de las ESC.

d) Programas de gestión del envejecimiento (PGE).

La existencia de este requisito establece que deben hacerse verificaciones para asegurar que todas las prácticas y actividades de mantenimiento establecidas son adecuadas y suficientes para el control efectivo de los mecanismos de degradación asociados.

Las actividades de mantenimiento, pruebas, inspección, verificación y control se dividen en programas específicos relacionados con los PGE. Para la inspección de estos programas deben utilizarse, como referencia, los grupos seleccionados anteriormente.

Deben seleccionarse ESC múltiples aplicables a determinadas combinaciones particulares definidas, por ejemplo, por tipo de componente, material, ambiente, mecanismo de degradación, etc., de los sistemas o grupos seleccionados.

Las cuestiones y consideraciones siguientes deben ser comprobadas durante la inspección:

i) Debe utilizarse como herramienta básica de información, el informe NUREG-1801 (GALL) [20] de la USNRC. Este informe establece, para cada sistema, una propuesta de uno o más PGE válidos para las combinaciones de las ESC (tipo de componente/material/ambiente/mecanismo de degradación) del sistema.

ii) Usando esta referencia, los PGE propuestos por el explotador para las combinaciones seleccionadas habrán de ser coherentes con los propuestos en el informe GALL.

Una vez identificado el elemento correspondiente en el GALL, debe ser hecha una comparación con los respectivos contenidos de los PGE, para la verificación de los atributos equivalentes.

(1) Deberá verificarse el grado de coincidencia o similitud entre ellos.

(2) Deberá verificarse la existencia de situaciones donde el GALL establece requisitos adicionales en relación a un programa básico de los PGE verificados.
En estos casos el explotador deberá modificar los PGE o justificar las desviaciones, excepciones o simplificaciones adoptadas.

En los casos en que se hayan utilizado los PGE de conformidad con el GALL, pero con excepciones, es necesario comprobar:

(A) Que las excepciones están debidamente fundamentadas;

(B) Que la alternativa propuesta por el explotador a los requisitos no utilizados del GALL cumple, cuando sea aplicable, los 10 atributos establecidos, descritos a continuación, para el PGE específico de la central nuclear.

Cuando el informe GALL no incluya información sobre una combinación particular (tipo de componentes, materiales, ambientes y mecanismos de degradación), o cuando el informe GALL indique la necesidad de que el explotador desarrolle un PGE específico, se podrá usar como guía, para la verificación de la metodología propuesta, la posición técnica RLSB-1, incluida en el Apéndice A del informe NUREG-1800 (SRP) [19] de la USNRC, así como en la Guía NEI-95-10 [22].

Esta última referencia para inspección se basa en 10 atributos genéricos. Estos atributos son aplicables a todos los tipos de PGE posibles (mitigación, prevención, vigilancia de las condiciones de funcionamiento o de control). Para la cuantificación de los atributos por el inspector y en ausencia del informe GALL, se utilizará, principalmente, la experiencia operativa de la central nuclear, que deberá justificar la adecuación y eficacia del contenido del PGE específico. Puede utilizarse también la experiencia de otras centrales nucleares que ya hayan elaborado programas similares, aceptados por el OR.

A continuación se enumeran los 10 atributos que pueden caracterizar cualquier PGE.

Si el programa PGE de la central coincide, sin excepciones, con el homólogo del informe GALL, es aceptable que se haga referencia directa al mismo en todos o la mayoría de estos atributos, sin extenderse a detallar cada uno, salvo en lo que sea necesario.

1) Alcance del programa

El PGE deberá incluir dentro de su ámbito de aplicación, la definición general de los tipos de ESC, materiales, ambientes y fenómenos de degradación aplicables. Esta información deberá ser coherente con el resultado del análisis del PGV.

Además, el PGE debe incluir un listado con referencia específica de las ESC en su ámbito de aplicación.

2) Acciones preventivas

En los casos en que los PGE establecen como estrategia la implementación de medidas preventivas, por ejemplo, un programa de pinturas de protección, debe verificarse la descripción de las acciones de gestión previstas para evitar o reducir al mínimo la ocurrencia de fenómenos de degradación.
Estas acciones pueden incluir actividades de mantenimiento, pruebas, inspección, verificación, optimización de la operación, etc., e incluso MD a implantar para controlar la degradación del componente o estructura.

3) Parámetros monitoreados o inspeccionados

El PGE deberá describir los parámetros que son controlados, junto con las pruebas y las actividades de inspección con el fin de supervisar y controlar los fenómenos de degradación.

4) Detección de los efectos del envejecimiento

El PGE deberá incluir las técnicas y métodos para la detección de los fenómenos del envejecimiento antes de que la ESC sea incapaz de cumplir con sus funciones.

Para este objetivo, hay que señalar el tipo y/o método de ensayo, inspección, frecuencia, tamaño de la muestra, puntos de medición, instrumentos de medición, etc., que sean adecuados. Cuando la estrategia de control se base en una muestra, se deberá demostrar que los criterios de selección de la muestra son razonables para garantizar la representatividad de la población total.

5) Seguimiento y análisis de tendencias

El PGE deberá prever el seguimiento y análisis de tendencias, que muestren la evolución de los fenómenos del envejecimiento y permitir la adopción de medidas adicionales de control, correctivas o de mitigación de las mismas.

El PGE debe incluir una descripción de los parámetros o indicadores utilizados para la vigilancia, la metodología de determinación de las perspectivas futuras y los criterios de aceptación aplicables a la toma de decisión.

6) Criterios de aceptación

El PGE deberá describir, para cada uno de los controles, los criterios de aceptación a partir de los cuales se determinará la necesidad de realizar medidas correctivas.

Estos criterios deben ser suficientemente conservadores para garantizar que la ESC estará operable y disponible durante el período de funcionamiento esperado para llevar a cabo sus funciones.

Además, el PGE deberá describir los métodos de análisis para determinar si los criterios de aceptación se cumplen.

7) Acciones correctoras

Si los criterios de aceptación no se cumplen, el PGE deberá describir las medidas correctoras adoptadas, como por ejemplo, cambios operativos, reparaciones, reemplazos, etc.
Debe especificarse, cuando sea necesario, la necesidad de análisis de causa raíz.

Deberán especificarse adicionalmente, para cada acción correctora definida, las unidades organizativas responsables de su aplicación, juntamente con el cronograma / plazo establecido.

8) Proceso de confirmación

El PGE deberá incluir una descripción de las acciones para vigilar la plena ejecución y eficacia de las acciones correctivas, preventivas o de mitigación, que deben llevarse a cabo.

9) Controles administrativos

El PGE deberá estar cubierto por el sistema de garantía / control de calidad existente en la central nuclear.

10) Experiencia operativa

La eficacia del PGE deberá considerar la experiencia operativa interna y externa adquirida, que deberá ser revisada periódicamente para incorporar nuevas experiencias y lecciones aprendidas. En este sentido, el explotador deberá considerar la información de otros proyectos que se puedan aplicar al PGE.

4.1.1.7. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento

Para la inspección se deben seleccionar varios PGE, verificando los resultados obtenidos durante un período de tiempo que se estime conveniente con respecto a las ESC en el ámbito de aplicación.

Deben considerarse también en la inspección aquellos PGE definidos como el resultado de un análisis AEFT, basado en el tiempo, frecuencia de inspección y de los procedentes de un ítem genérico de seguridad (GSI).

Deben ser verificados los PGE que sean específicos de la planta, contengan excepciones a los existentes en el GALL, o sean de nueva implantación en la central nuclear, verificando asimismo la adecuación y eficacia de estos PGE en el control de los mecanismos de degradación aplicados.

Deben verificarse los siguientes aspectos para los PGE seleccionados:

a) Los parámetros y variables vigiladas deben ser coherentes con las especificadas en el PGE. Las inspecciones, ensayos, pruebas, etc. deben haber sido realizadas utilizando las técnicas, frecuencias, muestreos, etc. especificadas en el mismo y siempre de acuerdo con los procedimientos.

b) El personal responsable de la realización de estas actividades tiene el entrenamiento y la experiencia necesarios.
c) El análisis de las tendencias correspondientes ha sido realizado cuando fue requerido por los PGE.

d) En todos los análisis de resultados obtenidos de la aplicación de los PGE se definen claramente los criterios de aceptación y se realiza una comparación de resultados obtenidos con los criterios aplicados;

e) En los casos donde los criterios de aceptación no se cumplen, debe verificarse que:

 i) Se ha realizado una ampliación de la muestra cuando sea solicitada.

 ii) Se han realizado los análisis posteriores necesarios (análisis de causa raíz, prevención de pérdida de funcionalidad, etc.).

 iii) Cuando sea necesario se han definido las medidas correctivas, sustituciones y MD necesarias y sus estrategias de implementación.

f) Las diferentes actividades de los PGE se realizan siguiendo los requisitos de garantía de calidad aplicables;

g) Según el caso y como resultado de la experiencia de los programas de prácticas se ha definido el programa de mejoras necesarias para aumentar su adecuación y eficacia. En este sentido, podrá ser de gran ayuda la definición de indicadores de eficacia, sumados a los resultados obtenidos en la aplicación de cada PGE.

4.1.1.8. Seguimiento de propuestas de mejora (PM)

Las PM se originan como consecuencia de las siguientes actividades:

a) Proceso inicial de definición de los PGE, teniendo en cuenta los 10 atributos característicos;

b) Cuando se requiere la expansión del alcance de los PGE para incluir nuevas ESC;

c) Experiencia operativa adquirida en la aplicación práctica de los PGE;

d) Consecuencia del análisis de la experiencia operativa.

Debe verificarse que el explotador haya establecido un mandato claro para el seguimiento de las PM y que los resultados son satisfactorios. Esta comprobación deberá considerar como base:

A) Los resultados obtenidos de las inspecciones realizadas sobre aspectos de gestión del envejecimiento, donde deberá verificarse el control de la gestión del programa de mejoras;

B) Las informaciones contenidas en los informes periódicos emitidos por el explotador para el OR.

Las informaciones obtenidas servirán como referencia para comprobar la eficacia del proceso, que demuestre entre otros aspectos: el número de PM que se han emitido y solucionado en el
periódico, tiempo previsto de resolución versus tiempo real requerido, definición de los indicadores de eficacia, resultados de dichos indicadores, etc.

4.1.1.9. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento

Debe verificarse que el explotador haya realizado un tratamiento adecuado de las MD y la sustitución de equipos en la central nuclear.

En particular, para los proyectos de aumento de la potencia, se aplicará lo dispuesto a continuación, dado que los mismos podrán implicar MD, cambios en las condiciones operacionales, reemplazo de equipos, etc., que afectan a la gestión del envejecimiento.

Debe verificarse que toda modificación en las ESC y en los procedimientos operativos que se realicen en la central nuclear, tengan la respectiva implicación en los análisis de la gestión del envejecimiento existentes.

Con este objetivo, deben seleccionarse algunas MD o sustituciones de equipos, comprobando que:

a) El explotador ha considerado explícitamente, en los criterios generales de proyecto, en el caso de la MD o en la especificación de nuevos equipos en el caso de sustituciones, los aspectos relacionados con la gestión del envejecimiento. Estos tendrán implicaciones en la selección de materiales, sistemas, márgenes del proyecto, sistemas de muestreo, vigilancia, inspección, pruebas, etc.;

b) El explotador ha examinado el efecto de la MD o de la sustitución del equipo que pueda afectar de forma indirecta en las condiciones de operación de las ESC existentes en la central nuclear, considerando que su variación puede causar cambios en los ambientes y posibles mecanismos del envejecimiento;

c) Las nuevas ESC incluidas en la central nuclear han sido analizadas según la metodología general de análisis de la gestión del envejecimiento.

El explotador puede haber establecido una estrategia de MD y sustituciones basada en la experiencia operativa que ha adquirido, el estado de las ESC, así como sus condiciones de obsolescencia. Este plan debe ser específicamente inspeccionado, analizando entre otros las razones y los ajustes de las medidas propuestas.

4.1.1.10. Revisiones de los documentos soporte

Estos controles están relacionados con el seguimiento de documentos soporte desarrollados anteriormente, y que después de un cierto período de tiempo se hayan actualizado por varias razones, como por ejemplo la incorporación de los resultados obtenidos en el análisis de la experiencia operativa, programas de investigación, nuevos ítems generales de seguridad (GSI), etc.

Durante la inspección deben ser seleccionados algunos de los documentos revisados, teniendo en cuenta el listado actualizado de la documentación de apoyo desarrollada en diferentes etapas del proceso (ámbito de aplicación y selección, identificación de efectos del envejecimiento, mecanismos de degradación, definición de los PGE, etc.) con el objetivo de verificar:
a) Las causas que llevaron a esta revisión;

b) La adecuación y coherencia de los cambios con la modificación y su soporte.

Cuando proceda, las revisiones documentales deben ser inspeccionadas de acuerdo a la metodología descrita anteriormente, teniendo en cuenta los criterios de alcance, selección, análisis de gestión del desarrollo, etc.

En los casos en que el inspector tenga información sobre la experiencia operativa, tanto interna como externa, o sobre los resultados de los programas de investigación que se hayan llevado a cabo en la central nuclear o en otros ámbitos externos, debe verificar si el explotador ha evaluado su impacto en la misma, y si esta situación debe generar una nueva revisión de los documentos soporte en cuestión.

4.1.1.11. Gestión de la obsolescencia

La obsolescencia de las ESC importantes para la seguridad deberá ser gestionada de forma proactiva, con previsión y anticipación durante la vida de diseño de la central nuclear.

El explotador deberá establecer un programa para la gestión de la obsolescencia. Este programa deberá incluir el objetivo, la estrategia, aspectos organizativos, la determinación de los recursos necesarios (humanos y financieros), y el seguimiento del programa para garantizar el cumplimiento de sus objetivos [1].

En este sentido, pueden ser mencionados dos tipos de obsolescencia:

a) Normativa: que se caracteriza porque las ESC no cumplan las normas, criterios, etc., existentes en el momento actual, como por ejemplo: criterios de cualificación de los equipos, de separación o redundancia, de diversidad o de funcionamiento en condiciones de accidentes graves, etc.

b) Tecnológica: se caracteriza por la dificultad para encontrar piezas de recambio o de asistencia técnica especializada (ejecución de trabajos de manutención, instalación, etc.).

El programa de gestión de la obsolescencia deberá centrarse más en la gestión de la obsolescencia tecnológica. Debe mencionarse que en el caso de la I&C la obsolescencia normativa podrá afectar tanto al software como el hardware. Además, el programa debe ofrecer una guía de vigilancia de la gestión de la obsolescencia, teniendo en cuenta los requisitos establecidos en la Revisión Periódica de Seguridad (RPS) [2] y en el DT4.

Las actividades de gestión de la obsolescencia del explotador deberán ser supervisadas por el OR durante la vida de diseño de la instalación nuclear.

Deberá verificarse que:

A) El explotador ha definido y puesto en práctica un programa para la gestión de la obsolescencia, estableciendo claramente el alcance, objetivos, responsabilidades, plazos, acciones, recursos y seguimiento del mismo para medir su eficacia;
B) Los programas de gestión de la obsolescencia incluyen:

i) Una evaluación sistemática y periódica de la obsolescencia;

ii) La estrategia a seguir una vez que el problema de obsolescencia se ha identificado para un tipo de componente.

C) Los programas son eficaces en la definición de las acciones y recursos necesarios para garantizar la funcionalidad de los componentes durante la vida de diseño de la central nuclear (piezas de repuesto, sustitución, disponibilidad de personal técnico, etc.).

4.1.2. Inspecciones rutinarias o periódicas del PGV (Inspección tipo 2)

4.1.2.1. Objetivo de la inspección

Dependiendo de la etapa de vida en que esté la central nuclear, deberán ser inspeccionadas una variedad de ESC relacionadas con el PGV establecido por el explotador. Algunos aspectos pueden ser similares en las diferentes etapas, mientras que otros aspectos son específicos de una determinada etapa en particular.

Son objetivos de este tipo de inspecciones:

a) Verificar la aplicación, actualización del control y el mantenimiento de los Programas de Gestión del Envejecimiento (PGE) que componen el PGV. Este objetivo se desarrolla en los apartados 4.1.2.2 a 4.1.2.12. Se prevé una frecuencia de realización de las inspecciones con este objetivo de una vez por año, o una vez cada dos años.

b) Verificar la situación de una muestra de las ESC desde la perspectiva de los PGE, que incluya las actividades de verificación documental y las actividades en el campo (“walkdowns”). Deberán ser inspeccionadas una variedad de ESC relacionadas con el PGV. Este objetivo se desarrolla en el apartado 4.1.2.13. Se prevé que estas inspecciones se realicen con mayor frecuencia (por ejemplo, trimestral o semestral).

Los Anexos 1, 2 y 3, que contienen un ejemplo de Hojas de chequeo o “check lists” de inspección, se pueden utilizar para facilitar la verificación de los diferentes aspectos en una inspección tipo 2 (apartados 4.1.2.2 al 4.1.2.13).

4.1.2.2. Aspectos organizativos y de gestión

Los principales aspectos a verificar en estas inspecciones se refieren al control de los posibles cambios o modificaciones en la estructura de la organización definida por el explotador en relación a la gestión del envejecimiento.

Esta parte de la inspección tiene como objetivo detallado el mismo citado en el apartado 4.1.1.1 de esta guía, si bien insistiendo en aquellos cambios o modificaciones que se hayan podido producir desde la última inspección realizada, que puedan incidir en el devenir del PGV.
Se deberá verificar que en las sucesivas revisiones del PGV y en los informes periódicos de ejecución del mismo se presenta la información pertinente sobre todas las cuestiones, como se expresa en los apartados siguientes.

4.1.2.3. Alcance y selección de ESC

En estas inspecciones de tipo 2, los principales aspectos que serán inspeccionados son:

a) Comprobar si el alcance y la selección de las ESC sometidas al proceso del PGV se ha modificado por adición o eliminación de ESC a la lista final verificada en la inspección de tipo 1.

b) Comprobar si el resultado del proceso de aplicación de la metodología, para las nuevas ESC de la central nuclear que entran en el alcance del PGV, es conforme al proceso general realizado inicialmente.

c) Comprobar si las ESC que salen de la lista final del proceso de alcance y selección lo hacen justificadamente.

En la verificación, por los inspectores, de los aspectos citados anteriormente, debe valorarse el uso de los documentos regulatorios que forman parte de las condiciones de la LO de la central nuclear y que sirven para justificar los cambios producidos.

La inspección se centrará, mediante la valoración de todos los elementos que han entrado o salido del listado o mediante una muestra representativa en el caso de ser un número elevado, en comprobar los resultados de las variaciones a nivel de los componentes mecánicos, eléctricos, de I&C y estructurales de la central nuclear, incluso en el caso de sistemas y estructuras complejas, tanto si se trata de adiciones como de eliminaciones de ESC en la lista final del proceso de alcance y selección.

Las directrices del apartado 4.1.1.4 siguen siendo válidas para el análisis de las nuevas ESC incorporadas.

4.1.2.4. Aspectos metodológicos relacionados con el análisis del PGV

La inspección, en este caso, deberá abordar los posibles cambios en la metodología, identificando posibles variaciones en los criterios generales establecidos en el PGV, en los modos de operación considerados, en la aplicación de nueva experiencia operativa, en modificaciones de los documentos de referencia y otras fuentes informativas, en el proceso de definición de los mecanismos y fenómenos de degradación, en la definición de PGE y en la identificación de PM.

En todos los aspectos citados se verificará que los cambios habidos están soportados de tal modo que no se produzcan cambios sustantivos en la metodología de análisis expresada en el PGV.

4.1.2.5. Resultados del análisis del PGV

La inspección ha de identificar si se han producido cambios en los resultados del análisis, como consecuencia de modificaciones en la determinación de materiales y ambientes, efectos del envejecimiento, mecanismos de degradación y PGE, en especial para las nuevas ESC incorporadas al
alcance del proceso, según se haya determinado en el apartado 4.1.2.3, y aplicando las mismas técnicas que las descritas en el anterior apartado 4.1.1.6, en particular la comprobación del análisis por atributos si se trata de PGE nuevos o modificados.

4.1.2.6. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento

En el caso de las inspecciones tipo 2, este aspecto podrá quedar reducido a la verificación de nuevos GSI que afecten tanto a las ESC existentes dentro del alcance inicial como a las nuevas ESC que se hayan incorporado al mismo.

Los criterios ofrecidos en el anterior apartado 4.1.1.7 son igualmente aplicables en este caso.

4.1.2.7. Seguimiento de propuestas de mejora (PM)

Debe verificarse que el explotador sigue manteniendo un mandato claro para el seguimiento de las PM y que los resultados son satisfactorios. Esta comprobación deberá considerar como base:

a) Los resultados obtenidos de las inspecciones realizadas sobre aspectos de gestión del envejecimiento, donde deberá verificarse el control de la gestión del programa de mejoras;

b) Las informaciones contenidas en los informes periódicos emitidos por el explotador.

En particular, se prestará atención al grado de avance en la implantación de las PM, comprobando su finalización o la existencia de un programa temporal, con un calendario definido, de implementación de las mismas.

4.1.2.8. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento

Los criterios sobre el contenido de las inspecciones a realizar en estos aspectos, que se muestran en el anterior apartado 4.1.1.9 son plenamente válidos en este caso.

En particular, se prestará atención al programa de MD y de sustituciones de equipos de la central nuclear, verificando que la repercusión sobre los aspectos de envejecimiento ha sido correctamente analizada y documentada.

4.1.2.9. Revisiones de los documentos soporte

En este aspecto, la inspección seguirá seleccionando los documentos que hayan sido revisados, a partir del listado actualizado de la documentación de apoyo desarrollada en diferentes etapas del proceso (ámbito de aplicación y selección, identificación de efectos del envejecimiento, mecanismos de degradación, definición de los PGE, etc.) con el objetivo de verificar:

a) Las causas que llevaron a esta revisión;

b) La adecuación y coherencia de los cambios con la modificación y su soporte.
En los casos en que el inspector tenga información sobre nueva experiencia operativa, tanto interna como externa, o sobre nuevos resultados de los programas de investigación que se hayan llevado a cabo en la central nuclear o en otros ámbitos externos, debe verificarse si el explotador ha evaluado su impacto en la misma, y si esta situación debe generar una nueva revisión de los documentos soporte en cuestión.

4.1.2.10. Gestión de la obsolescencia

En estas inspecciones, deberá verificarse que el explotador mantiene un programa para la gestión de la obsolescencia, estableciendo claramente el alcance, objetivos, responsabilidades, plazos, acciones, recursos y seguimiento del mismo para medir su eficacia, y que los programas de gestión de la obsolescencia siguen incluyendo:

a) La evaluación sistemática y periódica de la obsolescencia;

b) La estrategia a seguir una vez que el problema de obsolescencia se ha identificado para un tipo de componente.

4.1.2.11. Informes periódicos del PGV

Los informes periódicos del PGV tienen como objetivo presentar al OR las principales actividades desarrolladas en un periodo determinado (normalmente anual), relacionadas con la gestión del envejecimiento y llevadas a cabo por la organización del explotador de la central nuclear.

Estos informes pueden ser considerados como documentos complementarios al PGV y deben permitir al inspector conocer el progreso y la evolución de las actividades de gestión del envejecimiento realizadas por el explotador. Además, permitirá al mismo desconocer el estado actual de las ESC, lo que facilitará la identificación de los potenciales mecanismos de degradación relacionados con el envejecimiento. Los principales puntos que suelen ser abordados en estos informes son:

a) La información actualizada acerca de los aspectos organizativos;

b) Un resumen de las reuniones y discusiones del comité de gestión sobre las actividades específicas que ya existen en la instalación para el desarrollo de PGE;

c) Las actividades básicas de gestión sobre el envejecimiento realizadas por el explotador durante el período (pruebas complementarias, o revisión y actualización de las ya existentes), incluyendo una lista actualizada de los documentos y análisis previstos y las modificaciones realizadas;

d) El seguimiento de los compromisos con el OR, incluyendo el resultado de los controles relacionados con la gestión del envejecimiento;

e) Los resultados relacionados con la implementación del PGV (actividades, estado de las ESC, nuevas PM, etc.);

f) Las sugerencias para verificar las mejoras;
g) Los resultados relacionados con la participación de representantes del explotador en los grupos de investigación o de trabajos relacionados con la gestión del envejecimiento de las ESC.

4.1.2.12. Estado de las ESC

El segundo objetivo de estas inspecciones tipo 2 es verificar la situación de una muestra de las ESC desde la perspectiva de los PGE, que incluya las actividades de verificación documental y las actividades en el campo (“walkdowns”). Como tamaño de la muestra de ESC a inspeccionar, se considera adecuado seleccionar al menos una estructura, un sistema y dos componentes para cada inspección.

Esta selección se puede realizar basada en elementos recogidos de los registros operativos, tales como el historial de inoperabilidades de acuerdo con las Especificaciones Técnicas, la frecuencia de mantenimiento correctivo, los indicadores de disponibilidad y fiabilidad, los informes de eventos operativos, o el histórico de mantenimiento basado en las tasas de fallos. También es conveniente utilizar la información basada en el riesgo, procedente tanto del APS como de otras fuentes de información disponibles.

El informe GALL (NUREG-1801) [20] de la USNRC contiene tablas con ejemplos de identificación de las ESC, los mecanismos y efectos de la degradación, los PGE y sus recomendaciones asociadas.

Las actividades descritas son aplicables con la central nuclear en cualquier modo de operación. En caso de que se encuentre en condiciones de parada fría o recarga de combustible, las inspecciones deben incluir ESC en el interior de la contención y otras zonas restringidas.

La inspección deberá ser realizada en dos partes:

a) Verificación de la documentación aplicable, mediante las siguientes acciones:

i) Comprobar que los procedimientos relacionados con los PGE correspondientes son adecuados para el seguimiento de los efectos del envejecimiento en las ESC; por ejemplo, control predictivo, servicios de inspección, pruebas regulares, control de espesores, control de la corrosión, etc.

ii) Verificar la existencia y el desarrollo de los indicadores de los mecanismos de envejecimiento de las ESC seleccionadas.

iii) Comprobar la adecuación del Programa de Mantenimiento Preventivo y Predictivo de la instalación para identificar, vigilar, controlar o mitigar los efectos de la degradación por el envejecimiento debido a la ocurrencia de mantenimiento correctivo, informes de eventos operacionales, historial de inoperabilidades de acuerdo con las Especificaciones Técnicas, o inclusión de nuevas actividades de mantenimiento en el citado programa.

iv) Comprobar, cuando aplique, la previsión, implantación y eficacia de las MD en las ESC seleccionadas.
v) Comprobar que los mecanismos de degradación por envejecimiento que existen han sido identificados y que las eventuales deficiencias o puntos débiles están debidamente identificados. Comprobar adicionalmente que hay un plan o programa de mejoras asociadas.

vi) Comprobar que la información sobre la experiencia operacional interna y externa ha sido considerada y valorada, para las ESC seleccionadas.

vii) Comprobar la incidencia de los informes de eventos operativos que tengan como causa raíz la degradación por el envejecimiento, la superación de la vida útil, o causas desconocidas, en las ESC seleccionadas.

viii) Comprobar si existen algunas ESC consideradas obsoletas en funcionamiento. Verificar que estas ESC operan dentro de los criterios de operatividad adecuada o aceptable, y que para estas ESC existen programas de mejora asociados.

b) Inspección de campo (“walkdown”), incluyendo las siguientes acciones:

i) Realizar un recorrido en campo para verificar el estado de las ESC seleccionadas, así como su entorno y sus condiciones de operación. Identificar cualquier potencial anomalía o síntoma de degradación encontrado. Deben ser registrados para análisis posterior, y para la determinación de la relación con los mecanismos de degradación del envejecimiento, al menos los siguientes aspectos que apliquen a la ESC:

(1) Niveles de vibraciones superiores al normal;
(2) Fugas de fluidos;
(3) Señales de corrosión;
(4) Señales de erosión;
(5) Presencia de polvo y contaminantes;
(6) Presencia / desarrollo de grietas o fisuras;
(7) Estado de las conexiones eléctricas;

ii) Comprobar que las eventuales condiciones de degradación por el envejecimiento encontradas tienen su mecanismo de degradación identificado y que las actividades de seguimiento, control, mitigación y restauración de las condiciones normales están en curso.

iii) Comprobar que las eventuales condiciones de degradación por el envejecimiento encontradas pueden ser adecuadamente gestionadas durante el período de validez de la LO.
iv) Comprobar e identificar la existencia de condiciones ambientales internas y externas que puedan causar la degradación por el envejecimiento en las ESC seleccionadas.

4.2. Inspecciones durante la operación a largo plazo

4.2.1. Inspecciones de planes de gestión del envejecimiento incorporados a la renovación de la LO para la operación a largo plazo (PIEGE o PEV). (Inspección tipo 3)

4.2.1.1. Objetivo de la inspección

El hecho de que gran cantidad de centrales nucleares alrededor del mundo han alcanzado su vida de diseño con su equipamiento, en general, en buenas condiciones, ha abierto la posibilidad de que se lleven a cabo proyectos de extensión de vida con vista a que dichas centrales nucleares operen a largo plazo. Esto motivó que se desarrollaran internacionalmente una serie de normativas ligadas a este propósito. Entre ellas están las relacionadas con la gestión del envejecimiento durante el desarrollo del proceso de renovación de la LO (proyecto de extensión de vida) y la operación a largo plazo.

En este capítulo se mencionan las consideraciones a tener en cuenta durante las inspecciones regulatorias, tipo 3, de los aspectos ligados al envejecimiento cuando se encara un proceso de renovación de la LO que dé lugar a la operación a largo plazo de la central.

Muchos países han incorporado, perfeccionado o ajustado a sus realidades los documentos y normas desarrolladas en los países de origen de las tecnologías de sus centrales nucleares. En el caso de centrales nucleares de diseño estadounidense la metodología se apoya fundamentalmente en la desarrollada por su organismo regulador, USNRC, la Regla de Renovación de Licencias (LLR) 10CFR54 [13]. En otros casos, como los procedentes de la tecnología CANDU, la metodología se sustenta en el proceso definido por la CNSC, el informe RD-360 [12].

Durante estos procesos de renovación de licencia, los cuales deben comenzar 3 años antes de la fecha de expiración de la LO, se realizarán diversas inspecciones.

Dependiendo de la fase en la que se encuentre el proceso de renovación de la LO, las inspecciones podrán ser monográficas sobre determinados apartados del Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE), o del Proyecto de Extensión de Vida (PEV) en el caso de centrales CANDU, o bien ser de carácter multidisciplinario, tratándose aspectos relacionados con diferentes apartados de los mismos y en todos los casos para verificar aspectos de la evaluación. Los trabajos que acompañan este proceso pueden ser realizados tanto durante el funcionamiento normal de la central nuclear como durante las paradas de recarga de combustible.

En estas inspecciones del PIEGE y/o del PEV, como documentos incorporados a la renovación de la licencia para la operación a largo plazo, el objetivo básico es verificar el desarrollo y el contenido de la gestión del envejecimiento de la central nuclear para la aplicación durante su operación a largo plazo.

En este capítulo de la guía, que se desarrolla en los apartados 4.2.1.2 a 4.2.1.12, se establecen las inspecciones que debe realizar el OR, inmediatamente antes de iniciarse la operación a largo plazo, para:
a) Verificar la aceptabilidad del alcance, los requisitos, las metodologías y los resultados de las evaluaciones de envejecimiento realizadas hasta ese momento.

b) Verificar la aceptabilidad del alcance de las tareas de reacondicionamiento y las mejoras a la seguridad propuestas por el explotador.

c) Verificar que las tareas a ser ejecutadas para implementar las mejoras han sido apropiadamente planeadas considerando los aspectos relacionados con la seguridad radiológica y nuclear.

d) Verificar una apropiada ejecución de los trabajos relacionados con las mejoras.

e) Verificar que se ha actualizado la documentación de cumplimiento obligatorio, considerando el período extendido de operación.

Si el diseño de la planta requiriera de una parada de reacondicionamiento extendida, con recambio de componentes críticos, en el inicio de la operación a largo plazo, a lo anterior se agregará:

A) Verificar que se aplica un sistema apropiado de protección radiológica durante la parada de reacondicionamiento.

B) Verificar que se realiza una gestión adecuada de los desechos radiactivos generados en las tareas de reacondicionamiento de la central nuclear.

C) Verificar que se cumplen las condiciones técnicas para iniciar el proceso de re-arraanque de la central nuclear.

D) Verificar que durante el proceso de puesta en marcha se verifican las condiciones necesarias para el re-arraanque seguro de la central nuclear.

El PIEGE constituye el documento básico de licenciamiento que ha de presentar el explotador interesado en obtener una nueva LO, más allá de la vida de diseño de la central nuclear y, por definición, es el conjunto de análisis de gestión del envejecimiento que cubren las etapas clásicas de alcance y selección de ESC, identificación de efectos de envejecimiento y mecanismos de degradación, definición de PGE y PM, e incluye también AEFT que sean necesarios para la revisión de los análisis realizados con hipótesis de vida de diseño definida.

Este plan puede tener como referencia, para el caso de centrales del tipo PWR y BWR, la regulación estadounidense contenida en la regla 10CFR54 “Requisitos para la renovación de la licencia de operación” y los documentos que la desarrollan, tanto por parte de la USNRC [13, 14, 15, 16, 17, 18, 19, 20, 21] como por la industria nuclear [22].

4.2.1.2. Aspectos organizativos y de gestión

Los principales aspectos a inspeccionar son:
4.2.1.2.1. La estructura de la organización del explotador en relación con la preparación del PIEGE.

En esta parte de la inspección el objetivo particular es identificar la organización, grupo, comité, etc., establecido en la central nuclear que sea responsable de desarrollar los aspectos del PIEGE, de acuerdo a los mismos aspectos de composición y funcionamiento citados en el apartado 4.1.1.2, verificando:

a) Las funciones y actividades desarrolladas por estos grupos;

b) La relación jerárquica existente;

c) La frecuencia de las reuniones, los temas tratados y las decisiones adoptadas (actas de reunión);

d) La existencia de personas de la organización responsable de los aspectos prácticos relacionados con los PGE a largo plazo;

e) La disponibilidad de recursos adecuados y suficientes;

f) Las responsabilidades de todos los niveles, claramente determinadas y definidas;

g) Que el personal que participa en las actividades de gestión del envejecimiento a largo plazo dispone de los conocimientos necesarios acerca de los detalles de estos aspectos.

4.2.1.2.2. La adquisición y registro de informaciones relacionadas con la gestión del envejecimiento.

También acorde con la guía de seguridad NS-G-2.10 del OIEA, punto 4 [2] y el DT4, el explotador deberá contar con un sistema de adquisición y registro sistemático de datos que den soporte a la información contenida en el PIEGE.

Por tanto, en las inspecciones debe llevarse a cabo la valoración de este sistema (datos, análisis, etc.), verificando sus características principales y su eficacia, del mismo modo que se expresa en el apartado 4.1.1.2.1 de esta guía para el caso del PGV.

4.2.1.2.3. El seguimiento de los compromisos (condiciones, no conformidades, requisitos regulatorios, etc.) aceptados y los introducidos por el OR.

Deberá identificarse la resolución de todos los compromisos asumidos o impuestos durante la fase de vida de diseño, antes de iniciar la operación a largo plazo.

Para este fin, además de las informaciones proporcionadas en los informes periódicos, serán de esencial importancia las obtenidas durante las propias inspecciones de tipo 2 realizadas a lo largo de la vida de diseño de la central.
4.2.1.3. Alcance y selección de ESC

En la práctica internacional, hay diferentes metodologías para determinar el alcance y la selección de las ESC importantes para la seguridad, o que sean de relevancia económica para la central nuclear, tal como se describe en el apartado 4.3.3 del DT2. Es importante mencionar que la inspección regulatoria deberá incidir sobre las ESC dentro de dicho alcance, que se define en el DT1, apartado 5.

Las actividades reguladoras en relación con el proceso de alcance y selección de las ESC consideradas en la metodología establecida por el explotador, para la fase de la operación a largo plazo, deberán partir de la información enviada al OR, dentro del PIEGE, y que tras su evaluación conforme al proceso indicado en el DT2, las habrá aceptado o habrá establecido condiciones y/o recomendaciones adicionales al respecto.

El explotador deberá presentar una lista de las ESC dentro del alcance de la gestión del envejecimiento a largo plazo que deberá constituir la lista definitiva de ESC en el alcance del PIEGE, y que estará compuesta por la lista inicial de ESC junto con las modificaciones (adiciones o eliminaciones) de ESC ocurridas durante la vida de diseño de la central. El OR puede adicionalmente establecer la necesidad de inclusión de otras ESC que no hayan sido consideradas por el explotador inicialmente, lo cual deberá ser verificado en la inspección.

Los principales aspectos que serán inspeccionados son:

a) El alcance y la selección de los ESC que serán sometidos al proceso del PIEGE.

b) El resultado del proceso de aplicación de la metodología para las diferentes ESC de la central nuclear.

La verificación por los inspectores de los aspectos citados anteriormente, deberá efectuarse de acuerdo con lo expresado en los diversos subapartados del apartado 4.1.1.3, pero teniendo en consideración los cambios que se hayan podido producir a lo largo de la vida de diseño, en particular las incorporaciones y sustituciones de ESC producto de MD.

En consecuencia, a menos que los casos individuales lo justifiquen, la metodología a ser seguida por la inspección será igualmente la valoración de una muestra, es decir, la selección de un conjunto representativo de ESC en las cuales se hayan aplicado los criterios de alcance y selección.

El inspector debe determinar y examinar la muestra inicial. Si los resultados no son satisfactorios, la muestra deberá ser aumentada. Los criterios para la definición de las muestras serán diferentes y en cualquier caso adaptados al tipo de ESC a ser inspeccionado, así como a la fase de vida en que la instalación se encuentre.

Las ESC mecánicas, eléctricas y de I&C, así como las estructuras que sean pasivas y de larga vida y cuyo diseño esté afectado por un periodo definido de tiempo (por ejemplo, ESC cuyo diseño esté basado en un periodo de vida de 30 o 40 años) deberán haber sido identificadas correctamente. Estos componentes se incluirán y estudiarán en los análisis AEFT correspondientes, descritos en el apartado 4.2.1.12.
4.2.1.4. Resultados de la aplicación de la metodología de alcance y selección de ESC

El objetivo en esta parte de la inspección es asegurar que la metodología para determinar el alcance y la selección se aplicó correctamente y que los resultados obtenidos son satisfactorios. Los aspectos relacionados con la idoneidad de la metodología empleada por el explotador y su desarrollo son más propios de las actividades de evaluación que de las de inspección; en el DT2 se recogen estos aspectos.

A continuación, se destacan los principales aspectos a inspeccionar:

a) Los resultados globales a nivel de los sistemas y estructuras complejas:
 i) Contenido de la lista final de los sistemas y estructuras complejas.

 Deben identificarse, a partir de la lista definitiva de los sistemas y estructuras complejas derivados del proceso, los sistemas y estructuras que claramente se espera que estén presentes debido a sus funciones de seguridad realizadas.

 Como complemento a lo anterior, también se debe seleccionar un sistema o estructura que no aparezca en el listado, de modo que se verifique si realmente no realiza ninguna función específica de seguridad, con especial atención a las variaciones producidas por MD.

 ii) Proceso para el establecimiento de sistemas y estructuras dentro del ámbito de aplicación.

 Con el objetivo de verificar la correcta aplicación de la metodología deben seleccionarse los sistemas y estructuras en la lista final, verificando que se señala, en cada caso, la correcta identificación de sus funciones y por lo tanto, las partes del sistema y estructura dentro del ámbito de aplicación.

b) Los resultados a nivel de los componentes mecánicos, eléctricos y de I&C y las estructuras y edificios.
 i) La inspección se centrará en realizar comprobaciones similares a las descritas en el anterior apartado 4.1.1.4 de esta guía para el caso del PGV, con la misma amplitud y método, incluidas las verificaciones asociadas al “análisis por áreas” para los componentes eléctricos y de I&C, seleccionando una o varias de las áreas dentro del alcance y comprobando que se han considerado aquellos componentes individuales que la integran.

4.2.1.5. Aspectos metodológicos relacionados con los análisis del PIEGE

La inspección de los aspectos de la metodología deberá centrarse en las siguientes cuestiones dentro del contenido del PIEGE:

a) **Criterios generales utilizados por el explotador para la definición de materiales y ambientes.**
Estos criterios y metodología deben permitir la obtención de un conjunto de materiales y ambientes internos y externos representativos de la situación existente en los diferentes modos de operación considerados en este análisis.

Deberá verificarse la documentación de soporte utilizada por el explotador, las herramientas de apoyo informático usadas (por ejemplo las bases de datos), etc. Deberá verificarse, además, que el explotador ha definido detalladamente los materiales y ambientes (internos y externos) existentes al final de la vida de diseño para su uso en el análisis.

b) **Modos operativos y funciones considerados en el análisis.**

Debe verificarse que el explotador ha considerado los distintos estados de operación importantes en el análisis de la gestión del envejecimiento, en la medida en que estos condicionan los ambientes y los fenómenos de degradación que afectan a las ESC (operación normal, pruebas periódicas, períodos de recarga, flujos estancados o intermitentes, etc.).

c) **Consideración de la experiencia operativa.**

Debe verificarse la utilización de una metodología sistemática para el análisis de la experiencia operativa interna y externa (nacional e internacional) en la identificación de los mecanismos de degradación y los efectos del envejecimiento, así como en la definición de los PGE.

d) **Documentos de referencia.**

Deben verificarse las fuentes de datos específicas utilizadas en la identificación de los mecanismos de degradación y los efectos del envejecimiento, así como en la definición de los PGE.

Además, debe verificarse que el explotador considera en sus análisis y programas, las informaciones de los programas de investigación, temas generales de seguridad (GSI), nuevos procedimientos, etc.

e) **Procesos de definición de los mecanismos, los fenómenos de degradación y sus efectos.**

Debe verificarse el procedimiento específico utilizado por el explotador para determinar los mecanismos y fenómenos de degradación.

Generalmente, se habrán definido grupos de características material / ambiente similares, grupos de gestión del envejecimiento o “commodities”, dado que estos aspectos determinan los mecanismos de degradación actuantes. Cada grupo o “commodity” deberá tener asociado un conjunto de mecanismos y fenómenos de degradación potenciales, en relación con la función que el componente o estructura desempeña en el sistema.

Debe verificarse que el explotador contempla la detección de ciertos elementos particulares derivados de circunstancias específicas en las que se encuentran (zonas de estancamiento de flujo, zonas de aceleración de flujo, ambientes particularmente agresivos, etc.)
Debe verificarse con especial atención los casos en que las ESC desempeñan diversas funciones. En estos casos se deben establecer los mecanismos y los efectos de degradación específicos relacionados con cada función.

Debe verificarse la existencia de justificaciones para los elementos pertenecientes a un grupo y que no estén sujetos a los efectos característicos del mismo.

f) **Definición de los programas de gestión del envejecimiento (PGE).**

Debe revisarse la metodología, utilizada para definir los PGE, para controlar los fenómenos de degradación identificados previamente. Esta definición deberá estar materializada en un documento soporte con la información fundamental de cada PGE.

Debe verificarse que la metodología contempla la adopción de programas estándar con aplicación directa en la planta y programas específicos, cuando sea necesario.

Debe verificarse que el esquema de los PGE contenga al menos:

i) Una sección donde se presente, de manera exhaustiva, las ESC en su ámbito, con indicación de sus materiales, ambientes y mecanismos de degradación asociados;

ii) Una parte descriptiva de los programas específicos de inspección y control, que fundamentan un PGE;

iii) Una relación de PM.

g) Verificación del seguimiento de las propuestas de mejora (PM)

Debe verificarse la identificación sistemática de las PM asociadas con los PGE, y que estén debidamente definidas y registradas.

Las PM pueden surgir durante los procesos de conciliación de los PGE de la planta con ciertos programas estándar de referencia en la industria, como los del GALL.

El propio proceso de gestión del envejecimiento generará también lo que se define como "PM de alcance" del PGE cuando surjan nuevos componentes o estructuras a incorporar al PGE.

4.2.1.6. **Resultados del análisis del PIEGE**

Deben verificarse los resultados obtenidos como consecuencia de la aplicación de la metodología utilizada.

Los principales puntos que deben inspeccionarse son:

a) **Comprobación relativa a la determinación de materiales.**

Deben ser seleccionados múltiples componentes o estructuras para verificar que la identificación de los materiales se ha realizado correctamente, al nivel de sub-componente, con
el objetivo de garantizar que el conjunto de los materiales considerados en el análisis son compatibles con los materiales que realmente existen en la planta.

La información básica necesaria para este control estará normalmente contenida en la documentación del fabricante (catálogos), o en las bases de datos de componentes disponibles en la central nuclear. Este ítem es susceptible de formar parte de un PGE.

b) **Comprobación relativa a la determinación de ambientes.**

Deben seleccionarse múltiples componentes o estructuras donde haya sido identificado más de un estado de operación significativo para el análisis, verificando que en cada caso tanto el ambiente interno como el externo son correctos y representativos de los que realmente existen, y que no se evidencia ninguna omisión.

c) **Atribución de los efectos del envejecimiento y los mecanismos de degradación.**

Debe verificarse en la práctica la correcta identificación de los efectos del envejecimiento y los mecanismos de degradación de las ESC incluidas en el ámbito de aplicación.

Esta parte de la inspección deberá centrarse en los siguientes aspectos:

i) Cuando el explotador defina grupos genéricos "material-ambiente", deberán ser seleccionadas varias ESC como objeto de la inspección, verificando la corrección y la completitud de los mecanismos de degradación y los efectos del envejecimiento especificados para el grupo.

ii) De manera complementaria debe seleccionarse alguna combinación "material-ambiente" no considerada y que a priori no sea descartable por ser típica de instalaciones similares. Debe certificarse que efectivamente no hay ninguna ESC en este caso.

iii) Deben seleccionarse múltiples ESC para verificar de modo individual que los fenómenos de degradación y los mecanismos del envejecimiento identificados como aplicables son correctos y la lista es exhaustiva.

iv) Cuando los mecanismos de degradación estén identificados a través de la relación de los elementos con un grupo, deberá verificarse que efectivamente los componentes o las estructuras objeto de la evaluación pertenecen a este grupo. Si esta metodología no se ha utilizado, los fenómenos y mecanismos identificados aplicables deberán ser identificados, utilizándose referencias técnicas confiables y reconocidas.

v) Debe verificarse mediante la selección de una ESC adecuada a tal fin, que el explotador ha detectado los mecanismos de envejecimiento particulares que afectan a esa ESC, y que los mecanismos de degradación y los efectos del envejecimiento se han definido teniendo en cuenta las funciones de la ESC.

d) **Definición de los programas de gestión del envejecimiento (PGE).**
Debe verificarse que el conjunto de prácticas y actividades de mantenimiento establecidas es adecuado y suficiente para establecer el control efectivo de los mecanismos de degradación asociados.

En general, el conjunto de estas actividades de mantenimiento, inspección y control se agrupan en programas específicos, los PGE.

Se deben elegir PGE aplicables a determinadas combinaciones particulares, definidas por tipo de componentes, materiales, ambientes, mecanismos de degradación, etc., de las ESC o grupos definidos. Los siguientes aspectos deben ser tratados durante la inspección:

i) La herramienta básica a ser utilizada deberá ser preferentemente el informe GALL [20]. Este informe documenta, para cada sistema, las propuestas de PGE válidos para combinaciones establecidas por tipos de materiales, componentes, ambientes y mecanismos de degradación;

ii) Debe verificarse que los PGE propuestos para las combinaciones seleccionadas son coherentes con lo establecido en el GALL;

iii) Se debe prestar especial atención a los casos en que el GALL establece que el programa estándar aplicable tenga que ser ampliado como requisito para garantizar su validez. Debe verificarse que el PGE se ha mejorado, de hecho, en relación al programa estándar establecido en el GALL;

iv) En los casos donde el explotador haya tipificado algunos de sus PGE como consistentes y coherentes con el GALL, pero con excepciones, debe verificarse que:

 (1) Las excepciones están adecuadamente fundamentadas;

 (2) Las alternativas propuestas a los requisitos del GALL son satisfactorias y adecuadas.

v) En los casos donde el GALL no incluya informaciones relativas a determinadas combinaciones específicas, o en casos donde se indique la necesidad de desarrollar un PGE específico, se puede utilizar la posición RLSB-1 especificada en el Apéndice A del NUREG 1800, rev.1 (SRP) [19], para desarrollar los PGE específicos de la central nuclear.

A falta de soporte del GALL, para la cuantificación de los atributos debe utilizarse la experiencia operacional propia de la central nuclear para evaluar el contenido del respectivo PGE.

Puede utilizarse la experiencia de otras centrales nucleares de tecnologías similares que tengan esos PGE, siempre que hayan sido considerados como aceptables por el correspondiente OR.

e) Inspección del contenido de los PGE por atributos.
Como referencia para la inspección, los PGE deberán estar analizados conforme a los 10 atributos que deben caracterizar cualquier PGE, que son los mismos que se exponen en el apartado 4.1.1.6, debiendo verificarse el cumplimiento de los mismos en la fase inmediatamente anterior a la operación a largo plazo.

4.2.1.7. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento

Deben considerarse en la inspección aquellos PGE definidos como el resultado de un análisis AEFT, basado en el tiempo, la frecuencia de inspección y los procedentes de un ítem genérico de seguridad (GSI), en el periodo de tiempo inmediatamente anterior al inicio de la operación a largo plazo.

Deben verificarse los mismos aspectos, para los PGE seleccionados, que se citan en el apartado 4.1.1.7 de esta guía.

4.2.1.8. Seguimiento de propuestas de mejora (PM) del PIEGE

Las PM del PIEGE se originan como consecuencia de las siguientes actividades:

a) Proceso inicial de definición de los PGE, durante la fase del PGV (vida de diseño);

b) Cuando se requiere la expansión de los PGE para incluir nuevas ESC;

c) Experiencia operativa adquirida en la aplicación práctica de los PGE iniciales del PGV;

d) Nuevos PGE definidos durante la elaboración del PIEGE.

Debe verificarse que el explotador haya establecido un mandato claro para el seguimiento de las PM que hayan surgido de los PGE incorporados al PIEGE y que los resultados son satisfactorios. Esta comprobación deberá considerar como base:

A) Los PGE definidos inicialmente en el PGV y los nuevos surgidos durante la vida de diseño deberán tener todas sus PM totalmente implementadas (actividades a, b y c);

B) Los PGE definidos durante la elaboración del PIEGE deberán tener totalmente definidas sus PM, así como el programa y calendario de implementación de las mismas durante la fase de operación a largo plazo (actividad d).

Las informaciones obtenidas servirán como referencia para comprobar la eficacia del proceso de PM, que demuestre entre otros aspectos: el número de PM que se han emitido y solucionado en el periodo del PGV; el número de PM que se han emitido en el PIEGE; el tiempo previsto de resolución versus tiempo real requerido; la definición de los indicadores de eficacia; los resultados de dichos indicadores; etc.
4.2.1.9. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento

Deberá verificarse que el explotador ha realizado un tratamiento adecuado de las MD y la sustitución de equipos en la central nuclear.

Deberá verificarse que todas las MD de ESC o modificaciones de los procedimientos operativos que se hayan realizado en la central nuclear durante la vida de diseño y que tengan la respectiva implicación en los análisis de la gestión del envejecimiento existentes, se han incorporado convenientemente en las diversas fases del PIEGE (alcance y selección, determinación de mecanismos y efectos de degradación, definición de PGE, etc.).

Deberán seleccionarse, con este objetivo, algunas MD o sustituciones de equipos recientes (las previstas para implementar al final de la vida de diseño o al inicio de la operación a largo plazo), comprobando que:

a) El explotador ha considerado explícitamente, en los criterios generales de proyecto, en la MD o en la especificación de nuevos equipos en caso de sustituciones, los aspectos de la gestión del envejecimiento a largo plazo, tales como la selección de materiales, márgenes del proyecto, sistemas de muestreo, vigilancia, inspección, pruebas, etc.;

b) El explotador ha examinado el efecto de la MD o de la sustitución del equipo, que pueda afectar de forma indirecta en las condiciones de operación de las ESC existentes en la central nuclear, considerando que su variación puede causar cambios en los ambientes y posibles mecanismos del envejecimiento;

c) Las nuevas ESC incluidas o modificadas en la MD o en la sustitución han sido analizadas según la metodología general de análisis de la gestión del envejecimiento.

El explotador puede haber establecido una estrategia de MD y sustituciones basada en la experiencia operativa que ha adquirido, el estado de las ESC, así como sus condiciones de obsolescencia. Este plan debe ser específicamente inspeccionado, analizando entre otros aspectos las razones y los ajustes de las medidas propuestas.

4.2.1.10. Revisiones de los documentos soporte

Durante la inspección deben ser seleccionados algunos de los documentos revisados, relativos a resultados obtenidos en análisis de la experiencia operativa, programas de investigación, nuevos ítems generales de seguridad (GSI), etc., y se comprobará que se han tenido en cuenta como documentación de apoyo para las diferentes etapas del proceso del PIEGE (ámbito de aplicación y selección, identificación de mecanismos de degradación y efectos del envejecimiento, definición de PGE, etc.).

En los casos en que el inspector tenga información sobre la experiencia operativa, tanto interna como externa, o sobre los resultados de los programas de investigación que se hayan llevado a cabo en la central nuclear o en otros ámbitos externos, debe verificarse si el explotador ha evaluado su impacto en las etapas del PIEGE.
4.2.1.11. Gestión de la obsolescencia

La obsolescencia de las ESC importantes para la seguridad deberá ser gestionada de forma proactiva, con previsión y anticipación durante la vida de diseño de la central nuclear.

El explotador deberá continuar con el mantenimiento y actualización del programa para la gestión de la obsolescencia establecido en la fase del PGV, incluyendo igualmente el objetivo, la estrategia, aspectos organizativos, la determinación de los recursos necesarios (humanos y financieros), y el seguimiento del programa para garantizar el cumplimiento de sus objetivos.

En esta fase del PIEGE, con la vida de diseño prevista casi agotada, ambos tipos de obsolescencia, normativa y tecnológica (ejemplos típicos son: cualificación ambiental de equipos, dificultad para encontrar piezas de recambio o de asistencia técnica especializada, etc.) se agudizan especialmente.

Por ello, la inspección, teniendo en cuenta los requisitos establecidos en la Revisión Periódica de Seguridad (RPS) [2] y en el DT4, deberá verificar que:

a) El explotador mantiene un programa actualizado al final de la vida de diseño para la gestión de la obsolescencia, estableciendo claramente el alcance, objetivos, responsabilidades, plazos, acciones, recursos y seguimiento del mismo para medir su eficacia;

b) Los programas de gestión de la obsolescencia mantienen:
 i) Una evaluación sistemática y periódica de la obsolescencia;
 ii) La estrategia a seguir una vez que el problema de obsolescencia se ha identificado para un tipo de componente, al final de la vida de diseño o durante la operación a largo plazo.

c) Los programas son eficaces en la definición de las acciones y recursos necesarios para garantizar la funcionalidad de los componentes durante la vida de diseño y la operación a largo plazo de la central nuclear (piezas de repuesto, sustitución, disponibilidad de personal técnico, etc.).

4.2.1.12. Análisis de envejecimiento en función del tiempo, AEFT

Para la inspección de los AEFT, se seleccionarán uno o más análisis que el explotador haya identificado como AEFT, así como otros que potencialmente pudieran serlo como resultado de la evaluación que se haya realizado.

Para el proceso de inspección de los AEFT, se podrán utilizar las siguientes referencias documentales:

a) Documentos integrantes de las condiciones de licencia o documentación de cumplimiento obligatorio:
i) IS.

ii) LO e instrucciones complementarias a las mismas.

iii) Correspondencia de licencia entre explotador y OR.

iv) Documentos de bases de diseño.

v) Especificaciones Técnicas.

vi) Otros referenciados en las condiciones de licencia tales como: análisis de riesgo al fuego, estudios de calificación ambiental, análisis de tensiones y fatiga, etc.

b) AEFT genéricos incluidos en el Standard Review Plan, SRP (Capítulo 4), en el informe GALL (Capítulo X), y en la Guía NEI 95-10 (Capítulo 5) [19, 20, 22].

c) Solicitudes de renovación de LO y evaluaciones de la USNRC o de otros OR de referencia, correspondientes a centrales nucleares de tecnología similar.

Para los análisis no identificados como AEFT, se comprobará que el explotador dispone de una justificación razonable para la no inclusión de los mismos dentro de la lista de AEFT de la central nuclear.

Se verificará por cuál de los tres métodos válidos para la resolución de AEFT ha optado el explotador. Estos métodos son:

A) Justificar, mediante análisis, que el AEFT permanece válido para el periodo de operación a largo plazo.

B) Prolongar el AEFT hasta el final del periodo de operación a largo plazo (considerando el período adicional partiendo del análisis inicial).

C) Resolver el AEFT por medio de la gestión de los efectos del envejecimiento durante todo el periodo de operación a largo plazo (definición de un PGE de aplicación, o de acciones correctivas o compensatorias).

Para la inspección, tomando como base el listado final de AEFT identificados, se seleccionarán algunos de ellos, prestando especial atención a aquéllos que son específicos de planta, esto es, no identificados de forma genérica en el informe GALL, SRP, etc.

Se comprobará en cada caso que éstos han sido resueltos siguiendo alguno de los métodos válidos, y que el procedimiento seguido, programas de cálculo utilizados y las conclusiones obtenidas, son correctas y acordes con la normativa de aplicación.

Si existe algún AEFT resuelto mediante la opción de "gestión de los efectos del envejecimiento", se comprobará que en estos casos existe un PGE asociado cuyo alcance y contenido es coherente con lo establecido en el correspondiente AEFT (estructuras y componentes afectados, estrategia de gestión, etc.). Si se ha optado por la definición de acciones correctivas o compensatorias, se verificará que existe un programa de implantación, y que los plazos asociados al mismo son aceptables. Si dicho plazo supone su implantación antes del comienzo del periodo de operación a largo plazo, este aspecto deberá ser comprobado de forma específica en alguna
de las inspecciones previstas.

Se verificará por último que en los análisis de gestión del envejecimiento se refleja adecuadamente la aplicación de los AEFT a las estructuras y componentes correspondientes.

Igualmente, ciertas exenciones obtenidas por el explotador a los requisitos de licencia, que al ser dependientes de la variable "tiempo" pudieran constituir un AEFT, deben ser también objeto de inspección. Los requisitos a cumplir por estas exenciones son los señalados a continuación:

1) La exención seguirá aplicando durante el periodo de operación a largo plazo.
2) La exención afecta a ESC incluidas en el alcance de la revisión de la gestión del envejecimiento.
3) La exención se basa en un AEFT.

Para su inspección, en base a un listado con las exenciones vigentes, se seleccionarán una o varias que, a juicio del inspector, pudieran constituir un AEFT, pero no identificadas como tales por el explotador. Se comprobará en estos casos que el análisis dispone de una justificación al respecto. Adicionalmente, se seleccionará alguna de las exenciones que sí constituyen AEFT, con objeto de verificar que el explotador ha resuelto adecuadamente la misma, para el período de operación a largo plazo.

4.2.1.13. Contenido y etapas de un Proyecto de Extensión de Vida (PEV) para operación a largo plazo

En algún caso, como el de la tecnología CANDU, la metodología se sustenta en el proceso definido por la CNSC, el documento regulatorio RD-360 [12].

Durante estos procesos de renovación de la LO, los cuales deben comenzar en un plazo típico de 3 años antes de la fecha de expiración de la LO, se realizarán diversas inspecciones.

Dependiendo de la fase en la que se encuentre el proceso de renovación de la LO, las inspecciones podrán ser monográficas sobre determinados apartados del PEV, o bien ser de carácter multidisciplinario, tratándose aspectos relacionados con diferentes apartados de los mismos y en todos los casos para verificar aspectos de la evaluación. Los trabajos que acompañan este proceso de tres años pueden ser realizados tanto durante el funcionamiento normal de la central nuclear como durante las paradas programadas de mantenimiento.

En estas inspecciones del PEV, como documento incorporado a la renovación de la LO para la operación a largo plazo, el objetivo básico es verificar el desarrollo y el contenido de la gestión del envejecimiento de las ESC de la central nuclear para la aplicación durante su operación a largo plazo, de modo que sus funciones se mantengan durante la vida útil de la central nuclear.

En las próximas páginas, la Tabla B y la Figura 3 muestran el resumen del contenido y las etapas de un PGV considerado en un PEV para el caso de una central nuclear con diseño CANDU.

En la metodología asociada al PEV, se distinguen tres fases:
Tabla B. Resumen de las etapas de un PGV consideradas para un PEV de una central nuclear CANDU.

<table>
<thead>
<tr>
<th>Política del PGV para un PEV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Define los elementos principales del programa.</td>
<td></td>
</tr>
<tr>
<td>• Define los roles y responsabilidades; puede incluir el personal específico para el PEV, así como también la estructura de la organización necesaria.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Detalles del programa en general y estrategias: metas específicas y cronograma.</td>
<td></td>
</tr>
<tr>
<td>• Identificación de entrenamientos, herramientas y fuentes de información necesarias.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedimientos para los análisis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Proceso de implementación.</td>
<td></td>
</tr>
<tr>
<td>• Proceso de priorización.</td>
<td></td>
</tr>
<tr>
<td>• Procedimiento de implementación de la gestión de vida y medición de la efectividad (performance).</td>
<td></td>
</tr>
<tr>
<td>• Evaluaciones de Estado.</td>
<td></td>
</tr>
<tr>
<td>• Evaluaciones de Vida.</td>
<td></td>
</tr>
<tr>
<td>• Evaluación Sistemática del Mantenimiento.</td>
<td></td>
</tr>
<tr>
<td>• Proceso para el seguimiento de los análisis.</td>
<td></td>
</tr>
<tr>
<td>• Aseguramiento de la Calidad.</td>
<td></td>
</tr>
<tr>
<td>• Verificación del plan.</td>
<td></td>
</tr>
<tr>
<td>• Proceso de realimentación y mejoras.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metodologías de Evaluación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Evaluaciones de Estado</td>
<td></td>
</tr>
<tr>
<td>• Evaluaciones de Vida</td>
<td></td>
</tr>
<tr>
<td>• Evaluación Sistemática del Mantenimiento</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informe de Estado</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>El objetivo de un informe de estado es establecer la condición actual de los equipos y proveer un pronóstico de vida de la ESC, tanto para alcanzar su vida de diseño como para la posible extensión de la misma (operación a largo plazo). Esto se basa en el estudio en detalle de los mecanismos de degradación y el desarrollo de modelos que permitan predecir su comportamiento (ver Figura 3 para la Fase I).</td>
<td></td>
</tr>
</tbody>
</table>

Los resultados de esta etapa o Fase I serán volcados en un informe de estado, el cual proveerá una evaluación preliminar sobre la degradación por envejecimiento de las ESC seleccionadas (Fase II).

Además, este informe de estado propondrá los trabajos de investigación y desarrollo que deberán concretarse en una fase posterior (Fase III), para una mejor comprensión de los mecanismos de envejecimiento, su monitoreo y las acciones de mitigación necesarias.
Figura 3. Fases de un proceso de gestión de vida en una central nuclear CANDU.

4.2.1.13.1. Fase I

La Figura 4, a continuación, presenta un ejemplo clásico de las etapas que componen la Fase I de un PEV en la metodología CANDU.

El primer paso de esta fase es el desarrollo de políticas, planes y procedimientos que describen las reglas básicas para llevar a cabo su implementación en la central nuclear, con el análisis de las ESC críticas (ESCC) a través de las metodologías tales como las evaluaciones de estado, las evaluaciones de vida y la evaluación sistemática del mantenimiento.

Estas evaluaciones se apoyan en los programas de la central nuclear y requieren una revisión continua para garantizar que todos los efectos del envejecimiento se han considerado.

El informe de estado debe mantenerse permanentemente actualizado. Estas actualizaciones se deben realizar poco después de las revisiones programadas, ya que las mismas proporcionan informaciones importantes acerca de las ESC.

Cuando se produzcan otros eventos o cambios significativos después de la publicación del informe del estado inicial o una de sus actualizaciones, debe hacerse una inspección del mismo, especialmente teniendo en cuenta las propuestas para la gestión de vida.
Estas propuestas pueden incluir cambios en la química de los sistemas, cambios de procedimiento de operación, nuevos métodos de monitoreo, estudios más detallados de los mecanismos de degradación, MD, reparaciones de las ESC, etc.

El contenido mínimo típico de un informe de estado se presenta en la Tabla C, más adelante.

La inspección, de las alternativas posibles para solucionar los problemas que aparecen, debe considerar la aceptación por el OR de las soluciones propuestas por el explotador. Además el OR llevará a cabo las siguientes actividades:

a) Verificar los informes de estado de las ESC importantes y relacionadas con la seguridad (RS), comprobando que la metodología de evaluación es apropiada;

b) Asegurarse de que el informe refleja la situación real de la central nuclear y es completo;

c) Valorar si las inspecciones técnicas realizadas y la recogida de datos son adecuadas y si el personal que las ejecuta reúne las cualificaciones requeridas;

d) Verificar que las recomendaciones son suficientes y adecuadas, identificando las desviaciones;

e) Determinar las principales recomendaciones para la seguridad;

f) Realizar el seguimiento de la ejecución de las recomendaciones o modificaciones;

g) Exigir, si resulta justificado, un aumento de la frecuencia y de la extensión de la inspección de una determinada ESC.

Debe hacerse un control permanente de datos de operación, mantenimiento, programa de inspección en servicio, pruebas periódicas, experiencia operativa, etc., de cada ESC.

Debe realizarse una inspección general del conjunto de informes de estado y de los informes técnico-económicos, a partir de cada análisis de informe del estado particular.

El resultado deberá ser documentado en un informe de estado integrado sobre la gestión de vida de la central nuclear.

4.2.1.13.2. Fase II

Esta fase incluye un estudio detallado sobre el conocimiento del envejecimiento, con el objetivo de profundizar las conclusiones alcanzadas en la Fase I, estudios preliminares, en particular los puntos de las deficiencias relacionadas con la tecnología y con el funcionamiento de seguridad de las ESC durante su vida útil.

Las principales tareas a ser inspeccionadas son:

a) Estudios de investigación y desarrollo para mejorar el conocimiento actual de los mecanismos importantes del envejecimiento y determinar las causas raíces de la degradación por envejecimiento de las ESC;
b) Estudios sobre el control del envejecimiento a fin de verificar los diagnósticos existentes y las técnicas de evaluación que pueden detectar, oportunamente, la degradación por envejecimiento de una ESC;

c) Estudios sobre la mitigación del envejecimiento para mejorar los estudios existentes o desarrollar nuevos métodos, prácticas de operación y mantenimiento o nuevos proyectos necesarios para controlar la degradación por envejecimiento de una ESC;

d) Informe recopilatorio de esta etapa detallando las conclusiones obtenidas en los puntos anteriores.

Figura 4. Esquema básico de la Fase I del PGV para un PEV - CANDU.

4.2.1.13.3. Fase III

Esta Fase III incluye el plan de extensión de la vida útil de una instalación nuclear, PEV, e incluye las tareas de modernización, reacondicionamiento y operación después de la vida de diseño de la planta, o sea en la operación a largo plazo.
En los casos donde las inspecciones realizadas en las ESC en etapas anteriores han demostrado que se alcanza la vida de diseño en buen estado, se puede permitir que el explotador desarrolle un PEV con el fin de operar más allá de la vida de diseño de la central nuclear.

En esta Fase III se realizan los estudios técnicos y económicos que proporcionan una base para el logro de la operación a largo plazo, como por ejemplo los estudios de revisión de la gestión del envejecimiento, la aplicación de modificaciones de modernización y las revisiones generales que garanticen el funcionamiento de la central nuclear más allá de la vida de diseño en condiciones seguras y económicas.

Estos programas de revisión de la gestión del envejecimiento son un conjunto estructurado de actividades destinadas a supervisar, controlar y mitigar los efectos del envejecimiento que afectan a las ESC importantes para la seguridad.

Los programas de gestión se basan en las diversas prácticas de mantenimiento predictivo, preventivo y correctivo, programa de inspección en servicio, programas de erosión-corrosión, pro-
gramas de calificación ambiental, pruebas periódicas de las Especificaciones Técnicas, etc., así como cualquier actividad específica para los mismos fines que sea realizada en la central nuclear.

Para ello, el explotador deberá haber establecido una metodología general para realización de los análisis correspondientes. Como resultado de la aplicación de estas directrices y criterios deberán ser desarrollados análisis específicos para determinar los mecanismos y fenómenos de envejecimiento y comenzar a definir los PGE necesarios.

Para la definición, se utiliza el listado definitivo de los sistemas y componentes mecánicos, eléctricos y de I&C, así como de estructuras (incluyendo los componentes estructurales) que han pasado la etapa de selección y ámbito de aplicación de las ESC dentro del alcance de la revisión de la gestión del envejecimiento.

La secuencia lógica del desarrollo de la revisión de la gestión del envejecimiento, supone, en primer lugar, la determinación de los materiales y ambientes que corresponden a distintos elementos del ámbito de aplicación y selección; además, con base en los parámetros fundamentales, deben identificarse los mecanismos y efectos asociados al envejecimiento.

Deben definirse los PGE adecuados para el control de los mecanismos y efectos del envejecimiento identificados anteriormente.

Figura 5. Esquema del Informe Integral de Estado de una central nuclear tipo CANDU.
La estrategia de inspección para el contenido de un PEV es, muy semejante a la anteriormente desarrollada para el PIEGE, en consonancia con los aspectos de detalle de la metodología y la aplicación de la misma, pudiendo aplicarse muchos aspectos de los descritos en los apartados anteriores 4.2.1.2 al 4.2.1.11 de esta guía.

El conjunto de actividades desarrolladas, que serán objeto de las inspecciones tipo 3 a desarrollar sobre un PEV, se documenta en un Informe Integral de Estado de la central nuclear, cuyo esquema de desarrollo y contenido típico es el que se muestra en la Figura 5.

En principio, las fuentes de información que se utilizarán para preparar las inspecciones deberán tener en cuenta al menos los aspectos siguientes:

a) Históricos de mantenimiento;
b) Especificaciones Técnicas e IS;
c) Condiciones de contorno de operación, con enfoque en la disponibilidad de datos y la fiabilidad de los mismos;
d) Informes de eventos operacionales, centrándose en: eventos presentados con causa raíz; cuestiones relacionadas con el envejecimiento; causas desconocidas; ocurrencia a finales de la vida;
e) Resultados de los exámenes periódicos (de inspección);
f) Resultados de inspección en servicio;
g) MD, centrándose en los aspectos de la experiencia operativa, la obsolescencia o sustitución de las ESC, incluyendo la valoración de la eficacia y eficiencia de las mismas;
h) Programas de mejoras relacionados con la LO, incluyendo el programa de mejoras de la seguridad (PMS);
i) Programas de mejora relacionados con la RPS.

Como aspectos particulares de la inspección del contenido del PEV, se habrá de verificar:

A) Existencia de un listado de todos los programas incluidos en un programa integrado denominado Programa de Gestión de Degradación por Envejecimiento (PGDE). Estos programas deben estar ejecutados mediante procedimientos adecuados, formales y aprobados por el explotador.

Ejemplos de los programas que constituyen el PGDE son:

i) Programa de gestión de la obsolescencia;

ii) Programa de gestión del envejecimiento de la vasija del reactor, presionador y cabeza de la vasija del reactor;
iii) Programa de gestión del envejecimiento de los internos del reactor;

iv) Programa de inspección en estructuras de hormigón;

v) Programa de inspección de estructuras de acero;

vi) Programa de monitoreo de polímeros (revestimiento, junta, etc.)

vii) Programa de monitoreo de fatiga de las tuberías;

viii) Programa de inspección en servicio;

ix) Programa de control de fugas de ácido bórico;

x) Programa de control de la corrosión.

El informe GALL (NUREG 1801) se puede utilizar como fuente de referencia para la evaluación y selección de los programas de monitoreo y selección de las ESC. En las Tablas 1 a 6 del GALL se presentan ejemplos de PGE incluyendo componentes, mecanismos de degradación y recomendaciones respectivamente para el circuito primario, los sistemas de seguridad, los sistemas auxiliares, los sistemas de conversión de energía, los componentes civiles y estructurales y los componentes eléctricos.

B) En el caso de los AEFT debe verificarse que:

i) Las pruebas siguen siendo válidas para el período de validez de la LO a extender para la operación a largo plazo;

ii) El análisis debe ser proyectado para el final de dicha LO;

iii) Los efectos de la degradación del envejecimiento deben ser tratados adecuadamente para el período de validez de la LO.

C) Debe verificarse la existencia de evidencias de que todas las cuestiones relevantes para la seguridad estén tratadas dentro del ámbito de aplicación del PGDE.

D) Debe verificarse la existencia de evidencias de que los componentes pasivos y componentes de larga duración y los elementos de seguridad relevantes sean considerados en los programas de control y mitigación de los efectos del envejecimiento.

E) Debe demostrarse la existencia de criterios para el establecimiento de prioridades basadas en criterios de importancia de la seguridad, disponibilidad y fiabilidad de la metodología propuesta.

F) Debe verificarse la eficacia y la eficiencia de las actividades del PGDE, a través de la creación y seguimiento de indicadores. Para estos indicadores deben definirse los objetivos, definición y criterios de aceptación. Estos indicadores deben considerar el inicio de los primeros eventos, las condiciones materiales de funcionamiento, disponibilidad y fiabilidad de las ESC en el alcance.
G) Debe demostrarse que los dispositivos para identificar, supervisar, controlar, reducir o impedir la acción o los efectos del envejecimiento son eficaces y suficientes para garantizar que las ESC sean capaces de alcanzar su vida de diseño ejerciendo sus funciones adecuadamente.

H) Debe verificarse si hay indicios de que la vida de diseño de las ESC seleccionadas es consistente con el estado actual de operación. Además, las ESC deben estar operacionales durante el período de validez del diseño y la extensión de la vida (operación a largo plazo), sin la aparición de aspectos de deterioro prematuro o inesperado.

I) Debe verificarse que existen dispositivos que garantizan la revisión periódica del PGDE, para demostrar que los presupuestos, criterios, requisitos y motivos de su desarrollo siguen siendo válidos y que este programa ofrece la eficiencia y eficacia para garantizar que las ESC seleccionadas lleguen al tiempo de vida considerado en la LO solicitada, sin comprometer su funcionamiento, conforme se presenta en la guía de seguridad NS-G-2.12 [1] de la OIEA.

4.2.2. Inspecciones rutinarias o periódicas de la aplicación del PIEGE o del PEV durante la operación a largo plazo (PGV-LP). Inspección tipo 4

4.2.2.1. Objetivo de la inspección

Son objetivos de este tipo de inspecciones:

a) Verificar la aplicación, actualización del control y el mantenimiento de los Programas de Gestión del Envejecimiento (PGE) establecidos en el PIEGE o PEV, de acuerdo con el PGV-LP. Este objetivo se desarrolla en los apartados 4.2.2.2 a 4.2.2.12. Se prevé una frecuencia de realización de las inspecciones con este objetivo de una vez por año, o una vez cada dos años.

b) Continuar con la verificación de la situación de una muestra de las ESC desde la perspectiva de los PGE, que incluya las actividades de verificación documental y las actividades en el campo (“walkdowns”) durante la operación a largo plazo. Deberán ser inspeccionadas una variedad de ESC relacionadas con el PGV. Este objetivo se desarrolla en el apartado 4.2.2.13. Se prevé que estas inspecciones se realicen con mayor frecuencia (por ejemplo, trimestral o semestral), con las salvedades indicadas en 4.2.2.13.

Tanto en las inspecciones reglamentarias durante la vida de diseño (Inspecciones tipo 2) como las realizadas durante la operación a largo plazo de la central nuclear (Inspecciones tipo 4), siempre que el modo de operación lo permita, como por ejemplo, en las paradas frías o en las paradas de recarga de combustible, las inspecciones deben incluir ESC dentro de la contención o las zonas inaccesibles durante la operación normal.

Los Anexos 1, 2 y 3 (ejemplo de Hojas de chequeo o “check lists”) se pueden utilizar también para facilitar la verificación de los diferentes aspectos en una inspección tipo 4 (apartados 4.2.2.2 al 4.2.2.13).
4.2.2.2. Aspectos organizativos y de gestión

Los principales aspectos a verificar, en estas inspecciones, se refieren al control de los posibles cambios o modificaciones en la estructura de la organización definida por el explotador en relación a la gestión del envejecimiento.

Esta inspección tiene como objetivos detallados los mismos citados en el apartado 4.2.1.2 de esta guía, si bien insistiendo en aquellos cambios o modificaciones que se hayan podido producir desde la última inspección realizada, que puedan incidir en lo establecido en el PGV-LP.

Se deberá verificar que en las sucesivas revisiones del PGV-LP y en los informes periódicos de ejecución del mismo se presenta la información pertinente sobre todas las cuestiones, como se expresa en los apartados siguientes.

4.2.2.3. Alcance y selección de ESC

En estas inspecciones de tipo 4, los principales aspectos que serán inspeccionados son:

a) Comprobar si el alcance y la selección de las ESC sometidas al proceso del PIEGE, se han modificado por adición o eliminación de ESC a la lista final verificada en la inspección de tipo 3.

b) Comprobar si el resultado del proceso de aplicación de la metodología, para las nuevas ESC de la central nuclear que entran ahora en el alcance del PGV-LP, es conforme al proceso general realizado inicialmente.

c) Comprobar si las ESC que salen de la lista final del proceso de alcance y selección lo hacen justificadamente.

En la verificación por los inspectores de los aspectos citados anteriormente, debe valorarse el uso de los documentos regulatorios que forman parte de las condiciones de la LO de la central nuclear y que sirven para justificar los cambios producidos.

La inspección se centrará, mediante la valoración de todos los elementos que han entrado o salido del listado o mediante una muestra representativa en el caso de ser un número elevado, en comprobar los resultados de las variaciones al nivel de los componentes mecánicos, eléctricos, de I&C y estructurales de la central nuclear, incluso en el caso de sistemas y estructuras complejas, tanto si se trata de adiciones como de eliminaciones de ESC en la lista final del proceso de alcance y selección.

Las directrices del apartado 4.1.1.4 siguen siendo válidas para el análisis de las nuevas ESC incorporadas, con las salvedades que hayan podido surgir procedentes de los apartados 4.2.1.3 o 4.2.1.13, en cuanto a alcance y selección de ESC (PIEGE o PEV).

4.2.2.4. Aspectos metodológicos relacionados con los análisis del PGV-LP

La inspección, en este caso, deberá abordar los posibles cambios en la metodología, identificando posibles variaciones en los criterios generales establecidos en el PGV-LP, en los modos de operación considerados, en la aplicación de nueva experiencia operativa a los pasos de la meto-
dología, en modificaciones de los documentos de referencia y otras fuentes informativas, en el proceso de definición de los mecanismos y fenómenos de degradación, en la definición de un PGE a largo plazo y en la identificación de PM.

En todos los aspectos citados se verificará que los cambios habidos están soportados de tal modo que no se produzcan cambios sustantivos en la metodología de análisis expresada en el PGV-LP.

4.2.2.5. Resultados del análisis del PGV-LP

La inspección ha de identificar si se han producido cambios en los resultados del análisis, como consecuencia de modificaciones en la determinación de materiales y ambientes, mecanismos de degradación, efectos del envejecimiento y PGE, en especial para las nuevas ESC incorporadas al alcance del proceso, según se haya determinado en el apartado 4.2.2.3, y aplicando las mismas técnicas que las descritas en el anterior apartado 4.2.1.6, en particular la comprobación del análisis por atributos si se trata de PGE nuevos o modificados.

4.2.2.6. Proceso de identificación y resolución de GSI asociados a la gestión del envejecimiento a largo plazo

En el caso de estas inspecciones tipo 4, este aspecto podrá quedar reducido a la verificación de nuevos GSI que afecten tanto a las ESC existentes dentro del alcance inicial del PIEGE / PEV como a las nuevas ESC que se hayan incorporado al PGV-LP.

Los criterios ofrecidos en el anterior apartado 4.2.1.7 son igualmente aplicables en este caso.

4.2.2.7. Seguimiento de propuestas de mejora (PM) del PIEGE / PEV

Debe verificarse que el explotador sigue manteniendo un mandato claro para el seguimiento de las PM y que los resultados son satisfactorios. Esta comprobación deberá considerar como base:

a) Los resultados obtenidos de las inspecciones realizadas sobre aspectos de gestión del envejecimiento, donde deberá verificarse el control de la gestión del programa de mejoras;

b) Las informaciones contenidas en los informes periódicos emitidos por el explotador.

En particular, se prestará atención al grado de avance en la implantación de las PM durante la operación a largo plazo, comprobando su finalización o la existencia de un programa temporal, con un calendario definido, de implementación de las mismas.

4.2.2.8. Modificaciones de diseño (MD) y sustitución de equipos asociados a la gestión del envejecimiento a largo plazo

Los criterios sobre el contenido de las inspecciones a realizar en estos aspectos, que se muestran en el anterior apartado 4.2.1.9 son plenamente válidos en este caso.

En particular, se prestará atención al programa de MD y de sustituciones de equipos de la central nuclear en la fase de operación a largo plazo, verificando que la repercusión sobre los aspectos de envejecimiento ha sido correctamente analizada e incorporada a los correspondientes dossiers.
4.2.2.9. Revisiones de los documentos soporte

En este aspecto, la inspección seguirá seleccionando los documentos que hayan sido revisados, a partir del listado actualizado de la documentación de apoyo del PGV-LP desarrollada en diferentes etapas del proceso (ámbito de aplicación y selección, identificación de mecanismos de degradación y efectos del envejecimiento, definición de los PGE, etc.) con el objetivo de verificar:

a) Las causas que llevaron a esta revisión;

b) La adecuación y coherencia de los cambios con la modificación y su soporte.

En los casos en que el inspector tenga información sobre nueva experiencia operativa, tanto interna como externa, o sobre nuevos resultados de los programas de investigación que se hayan llevado a cabo en la central nuclear o en otros ámbitos externos, debe verificarse si el explotador ha evaluado su impacto en la misma, y si esta situación debe generar una nueva revisión de los documentos soporte en cuestión.

4.2.2.10. Gestión de la obsolescencia

En estas inspecciones, deberá verificarse que el explotador mantiene un programa eficaz para la gestión de la obsolescencia, estableciendo claramente el alcance, objetivos, responsabilidades, plazos, acciones, recursos y seguimiento del mismo para medir su eficacia, y que los programas de gestión de la obsolescencia siguen incluyendo:

a) La evaluación sistemática y periódica de la obsolescencia;

b) La estrategia a seguir una vez que el problema de obsolescencia se ha identificado para un tipo de componente, durante la operación a largo plazo.

4.2.2.11. Análisis de envejecimiento en función del tiempo (AEFT)

Los criterios sobre el contenido de las inspecciones a realizar en estos aspectos, que se muestran en el anterior apartado 4.2.1.12 son plenamente válidos en este caso.

Fundamentalmente se comprobará que todos los AEFT surgidos del PIEGE han sido resueltos por alguno de los tres métodos indicados en el apartado 4.2.1.12, en el plazo propuesto por el explotador y aceptado por el OR.

Se verificará también, a partir de la documentación soporte del PGV-LP, si ha surgido algún nuevo AEFT durante la fase de operación a largo plazo, que deberá ser tratado como se indica en el apartado citado de esta guía.

4.2.2.12. Informes periódicos del PGV-LP

Al igual que en el caso del PGV, el PGV-LP se completa con un informe periódico, en el que el explotador expone las principales actividades relativas a la gestión del envejecimiento realizadas durante el periodo anterior, siguiendo los criterios y metodología planteada en el PGV-LP.
Entre los puntos básicos tratados por este documento están:

a) Aspectos organizativos y de gestión relacionados con el plan de gestión del envejecimiento implantado en la instalación.

b) Aspectos de carácter general relacionados con la implantación de los PGE (actividades de seguimiento de ESC, gestión de PM, etc.).

c) Aspectos relacionados con la revisión de los distintos análisis de gestión del envejecimiento con motivo de MD acometidas en la instalación, implementación de PM, resultados de la experiencia operativa propia o ajena, programas de investigación, etc.

d) Avance de las actividades a realizar por el explotador, de acuerdo con lo establecido en el condicionado de la nueva LO, para el período de operación a largo plazo.

El PGV-LP se apoyará fundamentalmente en el PIEGE, así como en los documentos específicos de análisis desarrollados durante el proceso de renovación de la LO, sobre los temas ya señalados.

4.2.2.13. Estado de las ESC

El segundo objetivo de estas inspecciones tipo 4 es continuar verificando la situación de una muestra de los ESC desde la perspectiva de los PGE, incluyendo las actividades de verificación documental y las actividades en el campo (“walkdowns”). Como tamaño de la muestra de ESC a inspeccionar, se considera adecuado seleccionar al menos una estructura, un sistema y dos componentes para cada inspección.

En general, para este tipo de inspecciones en la fase de operación a largo plazo son plenamente aplicables las directrices y consideraciones establecidas para las inspecciones tipo 2 (apartado 4.1.2.12 de esta guía). Como premisa básica, hay que tener en cuenta que durante el periodo de operación a largo plazo, la gestión del envejecimiento se regirá por el PGV-LP, en lugar del PGV.

Además de las directrices que se establecen en el apartado 4.1.2.12, se tendrán en cuenta las siguientes consideraciones adicionales:

a) Entre las comprobaciones a realizar en relación con los informes periódicos sobre la aplicación del PGV-LP, en lo que concierne al seguimiento de los compromisos con el OR, se incluirá el resultado de los condicionantes de la nueva LO, para el período de operación a largo plazo.

b) En cuanto a las verificaciones sobre el estado de las ESC, se considerará la posibilidad de aumentar la frecuencia y/o tamaño de la muestra durante el periodo de operación a largo plazo, en función de su posible tasa de degradación. Además, entre los criterios para seleccionar la muestra de ESC a inspeccionar, se considerarán adicionalmente los resultados, enseñanzas y registros obtenidos del proceso de licenciamiento de la operación a largo plazo.
REFERENCIAS

[8] CNEN. “Autorización para el funcionamiento permanente (AOP) de Angra 1”.

LISTA DE AUTORES Y REVISORES

Conrado Alfonso Pallarés, CNSN (Cuba)
Diego Encinas Cerezo, CSN (España)
José María Figueras Clavijo, CSN (España)
Alexandre Gromann Araujo de Góes, CNEN (Brasil)
Ricardo Pérez Pérez, CNSNS (México)
Jaime Riesle Wetherby, CCHEN (Chile)
Reinaldo Valle Cepero, ARN (Argentina)
ANEXO A. EVALUACIÓN DE LA SEGURIDAD: VERIFICACIÓN DE LA METODOLOGÍA Y LA EVALUACIÓN PERIÓDICA

Evaluación de la Seguridad

<table>
<thead>
<tr>
<th>Verificación de la metodología y la evaluación periódica</th>
<th>PGV___-/</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R</td>
</tr>
</tbody>
</table>

1. Compruebe si hay una lista de todos los programas que componen el Plan de Gestión de Vida (PGV). Estos programas deben ser llevados a cabo mediante procedimientos adecuados, formales y aprobados por el explotador.

2. Compruebe si hay una lista de todos los análisis de envejecimiento limitados por el tiempo (AEFT).

3. Compruebe si hay evidencia de que todos los temas pertinentes a la seguridad se encuentran dentro del ámbito de aplicación del Plan de Gestión de Vida del explotador.

4. Compruebe si hay evidencias de que los componentes pasivos y de larga vida, relevantes para la seguridad, son considerados en los programas de monitoreo y mitigación de los efectos del envejecimiento.

5. Compruebe si hay criterios de priorización, basados en criterios de importancia para la seguridad, disponibilidad y fiabilidad de la aplicación de la metodología propuesta.

6. Verificar la eficacia y la eficiencia de las actividades del Plan de Gestión de Vida del explotador, mediante el establecimiento y seguimiento de indicadores. Para estos indicadores deben establecerse metas y/o márgenes aceptables.

7. Compruebe si hay dispositivos para identificar, vigilar, controlar, mitigar o impedir la acción o efectos del envejecimiento, a fin de que las ESC puedan alcanzar su vida útil, realizando sus funciones de seguridad.

8. Compruebe si hay pruebas de que la vida útil de las ESC seleccionadas es consistente con el momento actual de operación y que hay esperanza de lograr esa vida del proyecto sin la aparición de degradaciones imprevistas.

9. Compruebe si hay pruebas de que el explotador lleva a cabo todas las actividades propuestas por los Programas de Gestión de Envejecimiento.

10. Compruebe si hay dispositivos que garanticen la revisión periódica del Plan de Gestión de Vida.

Comentarios:

Inspección: Satisfactoria () Insatisfactoria () Fecha: ____________

Responsable: ____________

(A)Aceptable (R) Rechazado (N/A) No aplicable (Obs) Observaciones

Guía de inspección de gestión del envejecimiento y de operación a largo plazo de centrales nucleares

Primera Edición (Mayo de 2011)
ANEXO B. INSPECCIÓN REGULATORIA. INSPECCIÓN RUTINARIA PARA LA IDENTIFICACIÓN DE LA DEGRADACIÓN POR ENVEJECIMIENTO: VERIFICACIÓN DE LA DOCUMENTACIÓN Y LOS REGISTROS

<table>
<thead>
<tr>
<th>Inspección Regulatoria</th>
<th>PGV___/-/___</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección Rutinaria para la identificac</td>
<td>Verificación de la documentaci</td>
</tr>
<tr>
<td>de la Degradación por Envejecimien</td>
<td>y los registros</td>
</tr>
<tr>
<td>Verificación de la documentación y los</td>
<td></td>
</tr>
<tr>
<td>registros</td>
<td></td>
</tr>
<tr>
<td>ESC Seleccionada</td>
<td>Redundancia</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

1. Compruebe que los procedimientos relacionados con el Plan de Gestión de Vida (PGV) estén aprobados y en uso para el seguimiento de los efectos del envejecimiento en las ESC.

2. Verificar la existencia y el desarrollo de los indicadores de los mecanismos de envejecimiento para las ESC seleccionadas.

3. Comprobar el rendimiento de los Programas de Mantenimiento Preventivo (PMP) para identificar, vigilar, controlar o mitigar los efectos de la degradación por el envejecimiento.

4. Compruebe, cuando sea aplicable, la previsión, implantación, eficiencia y eficacia de las modificaciones de diseño de las ESC seleccionadas.

5. Compruebe que los mecanismos de degradación por envejecimiento existentes han sido identificados y que las deficiencias o puntos débiles están debidamente identificados. Verifique que hay un plan o programa de mejoras asociadas.

6. Compruebe si existe información sobre la experiencia operacional interna y externa y que fue considerada y valorada para las ESC seleccionadas.

7. Compruebe la incidencia de informes preliminares de eventos, informes de eventos importantes e informes que tengan como causa raíz la degradación por el envejecimiento, o causa desconocida en las ESC seleccionadas.

Comentarios:

A	R	N/A	Obs

Inspección: Satisfactoria () Insatisfactoria () Fecha:

(A)Aceptable (R) Rechazado (N/A) No aplicable (Obs) Observaciones
ANEXO C. INSPECCIÓN REGULATORIA. INSPECCIÓN RUTINARIA PARA DEGRADACIÓN POR ENVEJECIMIENTO: INSPECCIÓN SOBRE EL TERRENO (“WALKDOWN”)

<table>
<thead>
<tr>
<th>Inspección Regulatoria</th>
<th>Inspección Rutinaria para Degradación por Envejecimiento</th>
<th>PGV___-/_</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inspección sobre el terreno (“walkdown”)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESC Seleccionada</th>
<th>Redundancia</th>
<th>Piso(s) / Elev.</th>
<th>Fecha</th>
<th>Inspectores</th>
</tr>
</thead>
</table>

1. Compruebe que las eventuales condiciones de degradación por envejecimiento en las ESC seleccionadas han sido identificadas y documentadas, y se les da un tratamiento adecuado por el explotador.

2. Compruebe que las eventuales condiciones de degradación por envejecimiento encontradas tienen su mecanismo de degradación identificado, y que las acciones de seguimiento, control, mitigación y restauración de las condiciones normales están en curso.

3. Compruebe que las eventuales condiciones de degradación por envejecimiento encontradas pueden ser gestionadas adecuadamente durante el período de vigencia de la licencia.

4. Compruebe el tipo de material de la ESC seleccionada y las condiciones ambientales, internas y externas, que potencialmente pueden causar la degradación por envejecimiento en la ESC.

5. Compruebe la existencia de ESC consideradas obsoletas en operación. Para estas ESC compruebe la existencia de programas de mejoras asociados.

6. Compruebe que las ESC consideradas obsoletas operan con criterios de operatividad adecuados.

Comentarios:

Inspección: Satisfactoria () Insatisfactoria () Fecha:

(A)Aceptable (R) Rechazado (N/A) No aplicable (Obs) Observaciones