Proyecto PREEV
“Prácticas Reguladoras en Envejecimiento y Extensión de Vida”
DT 2

Guía de Evaluación de Gestión de Envejecimiento y de Operación a Largo Plazo de las Centrales Nucleares

FORO
Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares

Guía de evaluación de gestión de envejecimiento y de operación a largo plazo de las centrales nucleares
Primera Edición (Mayo de 2011)
“El presente trabajo fue realizado bajo el auspicio y financiación del Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares, FORO”.

Guía de evaluación de gestión de envejecimiento y de operación a largo plazo de las centrales nucleares
Primera Edición (Mayo de 2011)
FORO IBEROAMERICANO
DE ORGANISMOS REGULADORES
RADIOLÓGICOS Y NUCLEARES

PROYECTO PREEV
“PRÁCTICAS REGULADORAS EN ENVEJECIMIENTO Y EXTENSIÓN DE VIDA”

DT 2

GUÍA DE EVALUACIÓN DE GESTIÓN DE ENVEJECIMIENTO Y DE OPERACIÓN A LARGO PLAZO DE LAS CENTRALES NUCLEARES

Primera Edición
Mayo de 2011
Guía de evaluación de gestión de envejecimiento y de operación a largo plazo de las centrales nucleares

Primera Edición (Mayo de 2011)
GUÍA DE EVALUACIÓN DE GESTIÓN DE ENVEJECIMIENTO Y DE OPERACIÓN A LARGO PLAZO DE LAS CENTRALES NUCLEARES

TABLA DE CONTENIDO

1. **INTRODUCCIÓN** .. 1
2. **DEFINICIONES Y SIGLAS** .. 2
3. **OBJETIVOS** ... 9
4. **ALCANCE DE LA GUÍA** .. 10
5. **EVALUACIÓN DE LA GESTIÓN DE ENVEJECIMIENTO** .. 11
 5.1. Descripción General .. 11
 5.2. Aspectos Básicos de un Plan de Gestión de Vida (PGV) .. 12
 5.2.1. Política ... 12
 5.2.2. Plan .. 13
 5.2.3. Procedimientos ... 13
 5.3. Aspectos Objeto de Evaluación ... 14
 5.3.1. Aspectos Organizativos y de Gestión ... 14
 5.3.2. Informes Periódicos .. 15
 5.3.3. Alcance y Selección de ESC .. 16
 5.3.3.1.1. Alcance .. 18
 5.3.3.1.2. Selección .. 22
 5.3.3.2. Evaluación de los Resultados Ligados a la Aplicación de la Metodología de Alcance y Selección de ESC ... 25
 5.3.4. Revisión de la Gestión del Envejecimiento ... 30
 5.3.4.1. Fases y Contenidos de un PGV ... 30
 5.3.4.1.1. PGV para centrales nucleares CANDU .. 30
 5.3.4.1.2. PGV para PWR, BWR y PHWR con vasija ... 35
 5.3.4.1.3. Evaluación de Aspectos Metodológicos Relacionados con la Revisión de la Gestión del Envejecimiento ... 36
 5.3.4.2. Evaluación de Resultados Ligados a la Revisión de la Gestión del Envejecimiento ... 38
 5.3.5. Resultados de la Aplicación de los Programas de Gestión del Envejecimiento (PGE) 43
 5.3.6. Seguimiento de Propuestas de Mejora (PM) ... 45
 5.3.7. Seguimiento de Modificaciones de Diseño (MD) y Sustituciones de Equipos Relacionados con la Gestión del Envejecimiento ... 45
 5.3.8. Seguimiento de Revisiones de Documentos Soporte .. 46
 5.3.9. Evaluación del Proceso de Identificación y Resolución de Generic Safety Issues (GSI) aplicables a las centrales nucleares ... 47
 5.3.10. Gestión de la Obsolescencia .. 47
6. **GESTIÓN DE ENVEJECIMIENTO APLICABLE A LA OPERACIÓN A LARGO PLAZO** ... 48
6.1. Introducción .. 48
6.2. Plan de Gestión de Vida a Largo Plazo (PGV – LP) ... 49
6.3. Plan Integrado de Evaluación y Gestión de Envejecimiento (PIEGE) 49
6.4. Aspectos Objeto de Evaluación ... 50
 6.4.1. Revisión de los Análisis de Envejecimiento en Función del Tiempo (AEFT) 50
 6.4.1.1. Resultados del Proceso de Identificación de AEFT .. 51
 6.4.1.2. Proceso de Resolución de AEFT ... 51
 6.4.1.3. Proceso de Identificación y Resolución de Exenciones Basadas en AEFT 52
 6.4.1.4. Referencia a los AEFT en el Informe de Seguridad (IS) ... 53
6.5. Aspectos de Evaluación Específicos Relacionados con el Proceso de Renovación de Licencia ... 53
6.6. Evaluación de la Operación a Largo Plazo de Centrales Nucleares de Tipo CANDU .. 53
 6.6.1. Iniciación del Proyecto de Extensión de Vida (PEV) ... 53
 6.6.2. Evaluación del Documento Base de Licenciamiento .. 54
 6.6.3. Evaluación de la Revisión Periódica de Seguridad (RPS) ... 54
 6.6.4. Evaluación de Estudios de Envejecimiento ... 55
 6.6.5. Evaluación de los Análisis de Seguridad ... 55
 6.6.6. Evaluación del Plan de Mejora de la Seguridad (PMS) ... 55
 6.6.7. Evaluación del Impacto Radiológico Ambiental ... 57
 6.6.8. Evaluación de los Trabajos para la Implementación de Mejoras en Sistemas, Equipos y Componentes .. 57
 6.6.9. Evaluaciones Relacionadas con el Proceso de Renovación de Licencia 57
 6.6.10. Hitos .. 59
 6.6.11. Puntos de Control ... 59
 6.6.12. Retorno a la Operación Normal .. 59

LISTA DE ILUSTRACIONES

Figura 1. Esquema de Alcance y Selección de ESC importantes para la seguridad o de relevancia económica para ser tratados en un PGV, de una central nuclear CANDU .. 23
Figura 2. Esquema de alcance y selección de ESC para un PGV de una central PWR, BWR o PHWR con vasija ... 24
Figura 3. Esquema básico de la Fase I del PGV - CANDU .. 32
Figura 4. Esquema del informe integral de estado de una central nuclear CANDU 34
Figura 5. Fases de un proceso de gestión de vida en un reactor CANDU 35

LISTA DE TABLAS

Tabla A. Resumen de las etapas de un PGV para una central CANDU .. 31
Tabla B. Aspectos a tener en cuenta en un informe de estado de una ESC 33
Tabla C. Aspectos objeto de evaluación .. 50
1. **INTRODUCCIÓN**

De acuerdo con la misión del Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares (FORO) entre los objetivos básicos de esta asociación destaca tanto promover un alto nivel de seguridad en las prácticas que utilicen materiales radiactivos y nucleares, como fomentar el intercambio de información y experiencia en materia de seguridad nuclear y protección radiológica.

Uno de los instrumentos que utiliza el FORO para el cumplimiento de estos objetivos es el desarrollo de proyectos técnicos, mediante la constitución de grupos de trabajo compuestos por expertos de los estados miembros.

En este contexto, el Plenario del FORO aprobó en 2008 el inicio del proyecto PREEV, Prácticas Regulatorias en Envejecimiento y Extensión de Vida, cuyo objetivo fundamental es mejorar la acción reguladora en lo concerniente a los programas de gestión de vida y a la operación a largo plazo en las centrales nucleares de los países de la región.

El proyecto fue desarrollado por un equipo integrado por expertos de Argentina (ARN), Brasil (CNEN), Chile (CCHEN), Cuba (CNSN), España (CSN) y México (CNSNS), asistidos por un oficial del OIEA, que proporcionó información al respecto desde el punto de vista de ese organismo. Asimismo, el equipo fue apoyado por otros expertos de los distintos países, que participaron en determinadas actividades del proyecto.

Las tareas del proyecto PREEV se desarrollaron entre 2009 y 2010, habiéndose plasmado en la elaboración de un paquete documental, compuesto por cuatro guías para reguladores y una memoria técnica del proyecto. El propósito con que fueron concebidas las guías es que puedan ser utilizadas por cada país de la región, íntegramente o de forma parcial, y en la medida en que les fueran aplicables, tanto para el desarrollo de normativa propia como para el ejercicio de sus prácticas reguladoras. En cualquier caso, por su propio carácter de guías, no se pretende que sean documentos vinculantes. Por otra parte, si bien estas guías establecen las bases regulatorias en lo que respecta a gestión del envejecimiento y operación a largo plazo, se considera que para establecer una regulación completa en la materia es necesario incorporar requisitos de mayor grado de detalle, acordes con los aspectos específicos de cada país.

En cuanto al campo de aplicación específico del proyecto PREEV, debe destacarse, en primer lugar, que los organismos reguladores de la mayoría de los países del FORO habían ido requiriendo a los explotadores de las centrales nucleares la implantación de un proceso de gestión del envejecimiento, incluida la gestión en el caso de la extensión de su vida más allá de la vida de diseño, en los documentos sobre límites y condiciones de las licencias de operación.

En este contexto, la concepción del proyecto PREEV obedece a la conveniencia de establecer, con carácter general, los criterios a aplicar por los organismos reguladores para requerir la implantación de un sistema de gestión del envejecimiento de las estructuras, sistemas y componentes (ESC), incluyendo el caso de la operación a largo plazo, dotado de unas características que aseguren que dicho sistema cumple los objetivos esperados, desde el punto de vista de la seguridad. Asimismo, se trató de establecer directrices generales para el desarrollo y ejecución de las
prácticas reguladoras asociadas al licenciamiento, supervisión y control de los programas y actividades asociados.

Los documentos producto del proyecto PREEV están basados en los estándares del OIEA y en la normativa de los países más avanzados en tecnología nuclear. Están de acuerdo con los niveles de referencia establecidos por la Asociación de Reguladores Nucleares de Europa Occidental (WENRA). Son consistentes con el marco normativo de cada estado miembro representado en el proyecto. Por otra parte, pretenden reflejar la experiencia obtenida de la práctica reguladora en cada uno de los países integrantes del equipo de proyecto.

En este contexto, el objeto del presente documento (“DT2”) es proporcionar una guía a los reguladores para la evaluación de las actividades de gestión de envejecimiento y de operación a largo plazo de las centrales nucleares.

El resto de los documentos producto del proyecto son:

DT1: Guía de Criterios Reguladores para la Gestión de Envejecimiento y la Operación a Largo Plazo de Centrales Nucleares

DT3: Guía de Inspección de Gestión de Envejecimiento y de Operación a Largo Plazo de las Centrales Nucleares

DT4: Guía para la Revisión Periódica de la Seguridad de las Centrales Nucleares aplicada a los aspectos de Gestión del Envejecimiento y Operación a Largo Plazo

DT5: Memoria Técnica del Proyecto

2. DEFINICIONES Y SIGLAS

Para los efectos de la presente guía, son de aplicación las definiciones siguientes:

a) **Análisis de envejecimiento en función del tiempo (AEFT):** Análisis y cálculos realizados por el titular de la central nuclear y que cumplen las siguientes condiciones:

i) están relacionados con las ESC consideradas dentro del alcance de la gestión del envejecimiento

ii) tienen en cuenta los efectos del tiempo y de la operación a largo plazo

iii) mantienen hipótesis de vida de diseño limitada

iv) demuestran la existencia o carencia de capacidad de las ESC para seguir funcionando, de acuerdo con sus funciones definidas, tras haber sobrepasado las hipótesis de vida de diseño limitada

v) el cálculo o análisis fue considerado relevante en alguna evaluación de seguridad

vi) el cálculo o análisis forma parte de las condiciones de licencia actuales de la central
b) **Componentes activos:** Componente cuyo funcionamiento depende de un factor externo, tal como un accionamiento, un movimiento mecánico o el suministro de energía y que responde con un movimiento relativo de partes o un cambio de configuración.

c) **Componentes de larga vida:** Son aquellos componentes y estructuras que no están sujetos a reemplazo basado en una vida calificada o un período de tiempo especificado.

d) **Componentes pasivos:** Componente cuyo funcionamiento no depende de un factor externo, tal como un accionamiento, un movimiento mecánico o el suministro de energía y carece de partes con movimiento o susceptibles de cambiar de configuración.

e) **Condiciones de licencia:** Son el conjunto de requisitos de licenciamiento, requerimientos regulatorios y exenciones, derivados tanto de la normativa vigente en el momento de ser emitida la licencia de operación inicial como de la normativa incorporada con posterioridad.

Las condiciones de licencia están recogidas en los documentos oficiales de operación de la central nuclear, en las condiciones asociadas a la aprobación de los mismos y a la licencia de operación, así como en los compromisos del titular de la licencia de operación para asegurar el cumplimiento de las bases de diseño de los sistemas de seguridad (incluyendo las modificaciones realizadas). Las condiciones de licencia deben ser actualizadas cada vez que se produzca alguna modificación del marco normativo que las afecte.

f) **Degradación por envejecimiento:** Es el proceso por el cual las características físicas de las ESC de las centrales nucleares se modifican, llevando a un cambio en su comportamiento, debido a fenómenos tales como exposición a la irradiación, transitorios cíclicos de alta temperatura, presión, o ataques por corrosión, entre otros.

g) **Efectos del envejecimiento:** Son los cambios netos en las características de una ESC, que ocurren con el tiempo o el uso, debidos a los mecanismos de envejecimiento.

h) **Envejecimiento:** Conjunto de procesos (o mecanismos) por los que las características de una ESC se degradan progresivamente con el tiempo o con el uso. Se puede manifestar tanto en envejecimiento físico como en obsolescencia.

i) **Envejecimiento físico:** El ocasionado por procesos físicos, químicos o biológicos (mecanismos de envejecimiento). Ejemplos de mecanismos de envejecimiento son el desgaste, la fragilización térmica o por radiación, la corrosión y el ensuciamiento microbiológico.

j) **Especificaciones Técnicas:** Documento obligatorio que contiene los requisitos bajo los cuales se llevará a cabo la operación de la central nuclear, estableciendo, los límites, condiciones y vigilancias para operarla en una forma segura.

k) **Estructuras, sistemas y componentes (ESC):** Término genérico que abarca todos los elementos de una central nuclear:

 i) Las *estructuras* son los elementos pasivos que sustentan, dan apoyo o alojan a otros elementos: edificios, obras civiles, blindajes, etc.
ii) Un **sistema** comprende varios componentes o estructuras montados de tal manera que desempeñan una función específica.

iii) Un **componente** es una combinación de piezas o partes que forman una unidad funcional simple, distinguible, que cumple una función específica en un sistema. Son ejemplos los cables, transistores, circuitos integrados, motores, relés, solenoides, tuberías, bombas, vasijas, intercambiadores de calor, depósitos y válvulas.

l) **Estructuras, Sistemas y Componentes Críticas (ESCC):** Son todas aquellas estructuras, sistemas y componentes pertenecientes o no a los sistemas de seguridad, cuyo fallo puede afectar a la seguridad de una central nuclear, que además son condicionantes desde el punto de vista económico.

m) **Estudios de gestión del envejecimiento:** Análisis demostrativos de que los efectos del tiempo son considerados adecuadamente, para las ESC consideradas dentro del alcance de la gestión del envejecimiento, de modo que se mantengan las funciones definidas en sus condiciones de licencia, durante su vida útil (o de servicio).

n) **Función propia:** Referida a una ESC, es aquella función que justifica que dicha ESC esté incluida en el alcance del proceso de gestión de gestión del envejecimiento. Los criterios que permiten identificar las ESC con función propia son:

i) ESC que deben seguir funcionando, durante y después de cualquier suceso base de diseño que pudiera producirse, para garantizar las funciones siguientes:

 (1) la integridad de la barrera de presión del refrigerante del reactor,
 (2) la capacidad de parar el reactor y mantenerlo en una condición de parada segura; o
 (3) la capacidad de prevenir o mitigar las consecuencias de los accidentes, de modo que las exposiciones radiactivas fuera del emplazamiento se mantengan por debajo de los límites establecidos.

ii) ESC cuyo fallo podría impedir el cumplimiento satisfactorio de cualquiera de las funciones identificadas en el punto anterior.

iii) ESC, con los que se cuenta en los análisis de seguridad de la central nuclear y que están relacionados con los requisitos para la protección contra-incendios, calificación medioambiental, choque térmico a presión, transitorios sin parada automática del reactor y pérdida total de alimentación eléctrica.

o) **Gestión del envejecimiento:** Medidas técnicas, de operación o de mantenimiento destinadas a controlar dentro de límites aceptables la degradación por envejecimiento de estructuras, sistemas o componentes.

Ejemplos de medidas técnicas son el diseño, la calificación y el análisis de fallos. Ejemplos de medidas de operación son la vigilancia, la realización de procedimientos operacionales y la realización de mediciones ambientales.
p) **Grupos de componentes o “Commodities”:** Consisten en agrupaciones de componentes o estructuras con características similares que hacen posible la realización de un análisis único de gestión del envejecimiento, válido para todos ellos.

Los criterios de agrupación pueden fundamentarse en la existencia de diseños similares, materiales comunes, mismo tipo de componentes, la aplicación de prácticas similares de gestión del envejecimiento, o el hecho de estar sometidos a un mismo ambiente interno o externo.

q) **Informe de Seguridad (IS):** Documento oficial de la instalación que presenta la información necesaria y suficiente para que el Organismo Regulador pueda llevar a cabo la revisión independiente de una central nuclear desde el punto de vista de la seguridad nuclear y la protección radiológica, así como un análisis y evaluación de riesgos derivados del funcionamiento de la instalación, tanto en régimen normal como en condiciones de accidente. Contiene también descripciones detalladas de las funciones de seguridad de todos los sistemas de seguridad y de las ESC relacionadas con la seguridad, de sus bases de diseño y de su funcionamiento en todos los estados operativos, incluyendo la parada y las condiciones de accidente. Asimismo identifica los reglamentos, códigos y normas aplicables a la central nuclear. También suele denominarse mediante las siglas en inglés FSAR o SAR, *(Final) Safety Analysis Report.*

r) **Mecanismo significativo de envejecimiento:** Es aquel que, en consideración de su potencial desarrollo, hace necesario el requerimiento de una actividad de control o de mitigación para garantizar el cumplimiento de las funciones asignadas a las ESC afectadas, durante la vida útil (o de servicio).

s) **Obsolescencia:** Es el proceso de convertirse algo en anticuado debido a la evolución de los conocimientos o de la tecnología o a los cambios en la reglamentación o normativa. Son ejemplos del efecto de la obsolescencia (o envejecimiento no físico): la ausencia de elementos de seguridad eficaces o de criterios de diseño de seguridad (tales como: diversidad, separación o redundancia), la no disponibilidad de repuestos, la incompatibilidad entre equipos nuevos y viejos o la existencia de documentación anticuada o que no satisfaga la normativa vigente.

t) **Operación a largo plazo:** Operación continuada de la central nuclear manteniendo un nivel de seguridad aceptable, más allá de su vida de diseño, tras realizar una evaluación de seguridad que asegure que se mantienen los requisitos de seguridad aplicables a las ESC de la misma, implementando las mejoras necesarias. También se conoce por las expresiones *extensión de vida* o *alargamiento de vida.*

La evaluación de seguridad que fundamente la operación a largo plazo de la central nuclear ha de incluir, junto con la revisión de la gestión del envejecimiento para el nuevo periodo, la revisión de los análisis de seguridad considerando una vida útil superior a la vida de diseño de la central nuclear, en la que se evalúe si las conclusiones de estos análisis son válidas teniendo en cuenta el mayor periodo de operación.

u) **Plan de Gestión de Vida (PGV):** Programa de acciones que tiene como objetivo alcanzar la vida de diseño original, sin deterioro de la seguridad, y mantener abierta la posibilidad de renovar la licencia de operación de la central nuclear, para su operación a largo plazo. En los últimos tiempos esta denominación se aplica para reactores de tecnología...
CANDU; anteriormente se utilizaba la denominación Plan de Manejo / Gestión del Envejecimiento (PME/PGE), cuya metodología era parecida.

Un Plan de Gestión de Vida debe integrar y si es necesario, complementar, todas las actividades relacionadas con la evaluación y control de los mecanismos de envejecimiento que afecten a las ESC, pasivos y de larga vida, importantes para la seguridad.

v) **Plan de Gestión de Vida a Largo Plazo (PGV-LP):** Conjunto de Programas de Gestión del Envejecimiento vigentes durante la operación a largo plazo, encaminados a la vigilancia, control y mitigación de los mecanismos de envejecimiento y degradación que afectan a las ESC comprendidas dentro del alcance del proceso de gestión del envejecimiento.

Los efectos de envejecimiento, mecanismos de degradación, y programas de gestión asociados dentro del alcance de este Plan serán, tanto los identificados en el PIEGE, como otros que puedan surgir como consecuencia de la experiencia operativa propia o ajena, modificaciones de diseño, resultados de proyectos de investigación, etc., durante el período de operación a largo plazo.

El PGV-LP debe contemplar un procedimiento formal de identificación e implantación de propuestas de mejora y análisis de modificaciones de diseño.

w) **Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE):** Conjunto de análisis de gestión del envejecimiento que cubren las tres etapas clásicas del alcance y selección de ESC, identificación de efectos de envejecimiento y mecanismos de degradación, y definición de programas de gestión del envejecimiento. Incluye también los análisis de envejecimiento en función del tiempo (AEFT) que sean necesarios para la revisión de los análisis realizados con hipótesis de vida de diseño definida.

x) **Programas de Gestión del Envejecimiento (PGE):** Conjunto estructurado de actividades encaminadas a la vigilancia, control y mitigación de los efectos del envejecimiento que afectan a las ESC comprendidas en el alcance del proceso de gestión del envejecimiento. Los programas de gestión se basan en prácticas diversas de mantenimiento predictivo, preventivo y correctivo, programas de calificación ambiental, pruebas periódicas y vigilancias de las Especificaciones Técnicas de Funcionamiento (ETF), programas de inspección en servicio, programas de erosión-corrosión, etc., así como cualquier otra actividad de tipo específico con el mismo fin que pudiera realizarse en la central nuclear.

y) **Propuesta de Mejora (PM):** Son necesidades concretas de mejora asociadas a un determinado programa de gestión del envejecimiento, y que han sido evidenciadas al comparar el mismo con un programa estándar de referencia (por ejemplo, los del informe GALL - NUREG-1801 - de la USNRC), o bien al realizar su evaluación de forma genérica mediante el análisis de sus atributos. En algunas ocasiones, las mejoras pueden estar relacionadas sólo con el alcance del programa (“mejoras de alcance”), las cuales suelen surgir al realizar los distintos estudios de gestión del envejecimiento o al ser necesaria la aplicación de un determinado programa de gestión del envejecimiento a un nuevo grupo de componentes o estructuras, lo que supone la ampliación del alcance del mismo.

z) **Proyecto de Extensión de Vida (PEV):** La extensión de la vida de operación segura de una central nuclear más allá de su vida de diseño. Esto involucra el reemplazo o reacondicionamiento de los componentes principales o modificaciones sustanciales, o ambas.
aa) **Revisión Periódica de la Seguridad (RPS):** Reevaluación sistemática de la seguridad de una central nuclear llevada a cabo a intervalos regulares (usualmente, cada 10 años), para determinar el impacto en la instalación de los efectos acumulativos del envejecimiento, las modificaciones, la experiencia operacional, los desarrollos técnicos y los aspectos del emplazamiento, y que tiene por objeto garantizar un alto nivel de seguridad a lo largo de la vida operacional de la instalación.

bb) **Vida de diseño:** Intervalo de tiempo durante el que se espera que una central nuclear o un componente se comporte conforme a la especificación técnica de acuerdo con la cual se construyó o fabricó.

En la mayoría de las centrales nucleares de diseño occidental, parte de los análisis que dan soporte a la evaluación de seguridad de la planta se han realizado con la hipótesis de una vida de diseño de 30 o 40 años, por ejemplo, aquellos componentes que no pueden ser reemplazados, como la vasija del reactor y el edificio de contención, por lo que habitualmente se consideran 30 o 40 años como vida de diseño de la central nuclear.

c c) **Vida útil:** Intervalo de tiempo que transcurre desde que una estructura, sistema o componente empieza a funcionar hasta que se retira definitivamente del servicio. También se denomina vida de servicio.

La vida útil puede ser mayor que la vida de diseño, siempre que las condiciones reales de operación hayan sido menos severas que las supuestas en el diseño. Mediante la comparación entre las condiciones de diseño y las condiciones reales de operación puede determinarse el margen de vida remanente que le queda a una ESC.

En la presente guía se utilizan, además, los acrónimos siguientes:

A) AECL: Atomic Energy of Canada Limited
B) AEFT: Análisis de Envejecimiento en Función del Tiempo
C) APS: Análisis Probabilista de Seguridad
D) ARN: Autoridad Regulatoria Nuclear, de Argentina
E) BWR: Boiling Water Reactor
F) CANDU: Canadian Deuterium Uranium Reactor
G) CCHEN: Comisión Chilena de Energía Nuclear
H) CFR: Code of Federal Regulations (de Estados Unidos de América)
I) CNE: Central Nuclear Embalse (Argentina)
J) CNEN: Comissão Nacional de Energia Nuclear, de Brasil
K) CNSC: Canadian Nuclear Safety Commission (organismo regulador de Canadá)
L) CNSN: Centro Nacional de Seguridad Nuclear, de Cuba
M) CNSNS: Comisión Nacional de Seguridad Nuclear y Salvaguardias, de México
N) CSN: Consejo de Seguridad Nuclear, de España
O) CSNI: Comité de Seguridad de las Instalaciones Nucleares (de la OECD/NEA)
<table>
<thead>
<tr>
<th></th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>DT: Documento Técnico (del proyecto PREEV)</td>
</tr>
<tr>
<td>Q</td>
<td>EPRI: Electrical Power Research Institute (de Estados Unidos de América)</td>
</tr>
<tr>
<td>R</td>
<td>ESC: Estructuras, sistemas y componentes</td>
</tr>
<tr>
<td>S</td>
<td>ESCC: ESC críticas</td>
</tr>
<tr>
<td>T</td>
<td>FORO: Foro Iberoamericano de Organismos Reguladores, Radiológicos y Nucleares</td>
</tr>
<tr>
<td>U</td>
<td>GALL: Generic Ageing Lessons Learned (de la USNRC)</td>
</tr>
<tr>
<td>V</td>
<td>GSI: Generic Safety Issue (tema genérico de seguridad, de la USNRC)</td>
</tr>
<tr>
<td>W</td>
<td>I&C: Instrumentación y control</td>
</tr>
<tr>
<td>X</td>
<td>IS: Informe de Seguridad</td>
</tr>
<tr>
<td>Y</td>
<td>LO: Licencia de Operación</td>
</tr>
<tr>
<td>Z</td>
<td>LRR: Licensing Renewal Rule (de la USNRC)</td>
</tr>
<tr>
<td>AA</td>
<td>MD: Modificación de Diseño</td>
</tr>
<tr>
<td>BB</td>
<td>NEI: Nuclear Energy Institute (de Estados Unidos de América)</td>
</tr>
<tr>
<td>CC</td>
<td>NPP: Nuclear Power Plant</td>
</tr>
<tr>
<td>DD</td>
<td>NRS: No Relacionado con la Seguridad Nuclear</td>
</tr>
<tr>
<td>EE</td>
<td>NUREG: Nuclear Regulatory Document (de la USNRC)</td>
</tr>
<tr>
<td>FF</td>
<td>OECD/NEA: Organización para la Cooperación y el Desarrollo Económico/Agencia de Energía Nuclear</td>
</tr>
<tr>
<td>GG</td>
<td>OIEA: Organismo Internacional de la Energía Atómica</td>
</tr>
<tr>
<td>HH</td>
<td>OR: Organismo Regulador</td>
</tr>
<tr>
<td>II</td>
<td>PEV: Proyecto de Extensión de Vida</td>
</tr>
<tr>
<td>JJ</td>
<td>PGE: Programas de Gestión del Envejecimiento</td>
</tr>
<tr>
<td>KK</td>
<td>PGV: Plan de Gestión de Vida</td>
</tr>
<tr>
<td>LL</td>
<td>PGV-LP: Plan de Gestión de Vida a Largo Plazo</td>
</tr>
<tr>
<td>MM</td>
<td>PHWR: Pressurized Heavy Water Reactor</td>
</tr>
<tr>
<td>NN</td>
<td>PIEGE: Plan Integrado de Evaluación y Gestión del Envejecimiento</td>
</tr>
<tr>
<td>OO</td>
<td>PLEX: Plant Life Extensión</td>
</tr>
<tr>
<td>PP</td>
<td>PM: Propuesta de Mejora</td>
</tr>
<tr>
<td>QQ</td>
<td>PMS: Programa de Mejora de la Seguridad</td>
</tr>
<tr>
<td>RR</td>
<td>PREEV: Prácticas Regulatoras en Envejecimiento y Extensión de Vida</td>
</tr>
<tr>
<td>SS</td>
<td>PWR: Pressurized Water Reactor</td>
</tr>
<tr>
<td>TT</td>
<td>RD: Documento Regulador (de la CNSC)</td>
</tr>
<tr>
<td>UU</td>
<td>RM: Regla de Mantenimiento</td>
</tr>
<tr>
<td>VV</td>
<td>RPS: Revisión Periódica de Seguridad</td>
</tr>
</tbody>
</table>
3. OBJETIVOS

La presente guía tiene como objetivos proporcionar directrices para evaluar los aspectos de seguridad relativos a la gestión del envejecimiento de las centrales nucleares, de manera que se pueda comprobar que las mismas operan de forma segura hasta el final de su vida útil.

Se abordan los temas relacionados con la evaluación de la gestión del envejecimiento, los proyectos de extensión de vida y la gestión del envejecimiento a largo plazo de forma genérica. En ocasiones se señalan singularidades que se tienen en cuenta en algunos de los países que han participado en su elaboración.

Gran parte de las diferencias a la hora de encarar estos temas se debe a las diferencias tecnológicas y a las diferentes metodologías desarrolladas en los países diseñadores y fabricantes de las centrales nucleares.

Las evaluaciones a realizar en las distintas fases de la vida de la central nuclear, junto con las inspecciones regulatorias que se describen en el DT3, tendrán como objetivos la verificación de los aspectos siguientes:

a) Si la central nuclear puede alcanzar la vida de diseño original, sin deterioro de la seguridad, evitando la degradación imprevista de las estructuras, sistemas y componentes (ESC) de la central nuclear, encuadradas dentro del alcance del proceso de gestión del envejecimiento, que se define más adelante.

b) Si se ha establecido un programa de vigilancia, control y mitigación del envejecimiento durante la vida de diseño original, que permita alcanzar la vida técnico-económica definida por el explotador para la central nuclear.

c) Si la planificación y sistematicidad de la gestión del envejecimiento establecido para la operación a largo plazo permite garantizar, de forma razonable, la funcionalidad de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento.

d) Si durante el período de operación a largo plazo (extensión de vida), se realizan las actividades necesarias de gestión del envejecimiento que permiten garantizar, de modo razonable, la vigilancia, control y mitigación de los mecanismos de envejecimiento de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento, evitando su degradación imprevista y por tanto un deterioro de la seguridad.

Además, la presente guía define las evaluaciones que deberá llevar a cabo el organismo regulador (OR) para licenciar la operación a largo plazo de las centrales nucleares.
4. **ALCANCE DE LA GUÍA**

Esta guía aborda:

a) La evaluación de todas las etapas que comprenden el Plan de Gestión de Vida (PGV) durante la vida de diseño de las ESC encuadradas dentro del alcance del proceso de gestión del envejecimiento.

b) Los elementos claves que deben ser considerados y que serán evaluados al establecer el alcance, planificación y ejecución de un Proyecto de Extensión de Vida, PEV (típico de las centrales nucleares CANDU) o durante el proceso de renovación de la licencia de operación en caso de superarse la vida de diseño de la central nuclear, programa conocido como Plan Integrado de Evaluación y Gestión del Envejecimiento (PIEGE), en el caso de las centrales nucleares de diseño estadounidense.

c) La evaluación de los Planes de Gestión de Envejecimiento a Largo Plazo (PGE – LP) que integran los diversos Programas de Gestión del Envejecimiento (PGE) vigentes durante el período de operación a largo plazo.

Dichas evaluaciones comprenden los puntos siguientes:

A) El alcance, los requisitos, las metodologías y los resultados de las evaluaciones de envejecimiento.

B) La aceptabilidad del alcance de las tareas de reacondicionamiento y las mejoras a la seguridad propuestas por el explotador.

C) Verificar que las tareas a ser ejecutadas para implementar las mejoras han sido apropiadamente planeadas considerando los aspectos relacionados con la seguridad radiológica y nuclear.

D) Verificar una apropiada ejecución de los trabajos relacionados con las mejoras.

E) Verificar que se ha actualizado la documentación obligatoria considerando el período extendido de operación.

En la guía aplicable a las Revisiones Periódicas de la Seguridad, RPS (**DT4**), también se proporcionan directrices en relación con estos aspectos.

Si el diseño de la central nuclear requiriera de una parada de reacondicionamiento extendida, se tendrán en cuenta dos aspectos fundamentales vinculados con el recambio de componentes que afectan a la seguridad debido a su envejecimiento. El primero, relacionado con que algunas ESC pudieran estar contaminadas (canales combustibles, alimentadores, generadores de vapor, etc). El segundo, el rearranque, especialmente si se han introducido componentes nuevos en el reactor, lo que implica que se realizará con el núcleo fresco. Por lo tanto, a los puntos anteriores se agregarán:

a) Verificar que se realiza una gestión adecuada de los desechos radiactivos generados en las tareas de reacondicionamiento de la central.
b) Verificar que se aplica un sistema apropiado de Protección Radiológica durante la parada de reacondicionamiento.

c) Verificar que se cumplen las condiciones técnicas para iniciar el proceso de re-arranque de la central.

d) Verificar que durante el proceso de puesta en marcha se verifican las condiciones necesarias para el re-arranque seguro de la central.

Esta guía sólo contempla aquellos aspectos relacionados con la seguridad radiológica y nuclear. Si bien las evaluaciones relacionadas con la seguridad física y salvaguardias exceden el alcance de esta guía, éstas deberán ser establecidas en el marco del licenciamiento de la Operación a Largo Plazo. Lo mismo es aplicable para las evaluaciones relacionadas con la Seguridad e Higiene de la central nuclear, para el caso de los países en los que el control de esos aspectos sea responsabilidad del OR.

5. EVALUACIÓN DE LA GESTIÓN DE ENVEJECIMIENTO

5.1. Descripción General

Las centrales nucleares, al igual que otras instalaciones convencionales, están sujetas al envejecimiento.

La gestión del envejecimiento de una central nuclear tiene como objeto alcanzar la vida de diseño garantizando la operación segura y económicamente factible de la central nuclear y crear las bases para una posible operación a largo plazo.

El envejecimiento es controlable si:

a) Los síntomas pueden reconocerse

b) El mecanismo de envejecimiento es conocido y puede ser vigilado.

c) Se toman las medidas adecuadas y a tiempo para su mitigación.

Un PGV permite una optimización costo-beneficio para las inversiones de capital, cambio y modernización de equipos (manejo de obsolescencia), sistemas y las tareas generales de operación y mantenimiento. Por otra parte, permite conocer lo siguiente:

A) Duración de las ESC de la central nuclear

B) Costo de su mantención

C) Costo de su reemplazo

D) Manejo de los cambios.
Un PGV provee un análisis sistemático para la detección temprana de los efectos del envejecimiento de los ESC críticos (ESCC). Las tareas que se realizan son las precursoras de las actividades de modernización y reacondicionamiento para una posible operación a largo plazo.

Además, la gestión de envejecimiento permite controlar, mejorar y actualizar los programas de operación, mantenimiento (preventivo, predictivo y correctivo), modificaciones, seguimiento de la química, inspecciones en servicio, etc., para que éstos sean más efectivos.

En la práctica internacional existen varias metodologías para el desarrollo de los PGV. Algunos países miembros del FORO han aceptado, entre otras, la metodología de análisis desarrollada fundamentalmente por el OR estadounidense (USNRC) en la Regla de Renovación de Licencias, 10CFR54 “Requirements for Renewal of Operating Licenses for NPP” [19], o las desarrolladas por el OR canadiense, (CNSC) conocidas como “Ageing and Ageing Management in CANDU Nuclear Power Plants” [17] o la RD – 360 “Life Extension of NPP” [16].

De cualquier manera, e independientemente de cuál sea la metodología adoptada, debe existir un grupo de documentos básicos que serán objeto de evaluación por parte de los OR, donde los explotadores reflejarán los objetivos y principios básicos de la gestión del envejecimiento, así como la metodología y resultados de los análisis realizados en las distintas fases del proceso. A estos documentos, objeto de evaluación, se les adicionarán otros que el explotador aportará durante las diversas inspecciones que sobre gestión del envejecimiento deberá realizar los OR durante las distintas fases de la vida útil de las centrales nucleares (acorde con la guía DT3).

5.2. Aspectos Básicos de un Plan de Gestión de Vida (PGV)

Un PGV deberá incluir la estrategia básica de gestión del envejecimiento de las ESC por el explotador durante el periodo de vida de diseño de la central nuclear y deberá permitir como mínimo la detección, medición y control del envejecimiento natural y la obsolescencia de las ESC, así como el ocasionado por la explotación bajo condiciones adversas o severas.

Debe observarse que el número de etapas, o fases, de un PGV depende de la metodología utilizada por la organización del explotador. Cabe mencionar también que en la mayoría de los países miembros de la OIEA se considera el PGV como un documento de carácter mandatorio. En este caso, el OR deberá establecer un determinado periodo para la ejecución de las actualizaciones del referido plan. Estos periodos varían normalmente entre uno y cinco años.

El PGV se complementará con un informe periódico en el que el explotador expondrá las principales actividades relativas a gestión del envejecimiento, realizadas durante el periodo anterior, siguiendo los criterios y metodología planteada en el PGV. Sobre estos aspectos se proporcionan directrices en el DT1.

A continuación, se aborda el contenido básico para el desarrollo de un PGV.

El primer paso de un PGV es elaborar la política, planes y procedimientos que delinearán las reglas básicas para llevar a cabo su implementación en la central nuclear, por lo que resulta necesario contar con los siguientes documentos:

5.2.1. Política

a) Define los elementos principales del plan
b) Define los roles y responsabilidades: puede incluir el personal específico para el PGV, así como también la estructura de la organización necesaria.

5.2.2. Plan

a) Detalles del plan general y estrategias: metas específicas y cronograma.

b) Identificación de entrenamientos, herramientas y fuentes de información necesarias.

5.2.3. Procedimientos

Procedimientos para los análisis de aspectos tales como:

a) Proceso de implementación del plan

b) Proceso de priorización de ESC

c) Procedimiento de implementación de la gestión del envejecimiento y medición de los resultados

d) Metodologías de evaluación de ESC (evaluación de estado, evaluación de vida, evaluación sistemática de mantenimiento, etc.)

e) Proceso para el seguimiento de los análisis

f) Aseguramiento de la calidad

g) Verificación del plan

h) Procesos de realimentación y mejoras.

El desarrollo de este plan incluye como tarea básica el análisis de ESC, mediante la implementación de metodologías de evaluación.

Estas tareas son soportadas por los programas de planta en curso y demandan un análisis para garantizar que todos los efectos de envejecimiento sean considerados.

Dichos análisis deben ser sistemáticos, rigurosos y adaptarse a la complejidad de las ESC.

Los PGV se apoyan en una serie de documentos más específicos, que contienen el detalle de los análisis ligados a las distintas fases de la gestión del envejecimiento. Es común que el PGV haga referencia a análisis específicos relativos a:

A) Alcance y selección de componentes (componentes mecánicos, eléctricos, instrumentación y control y estructuras),

B) Análisis de fenómenos de envejecimiento y mecanismos de degradación,

C) Programas de gestión del envejecimiento (PGE) específicos.
5.3. Aspectos Objeto de Evaluación

Dependiendo de la fase en la que se encuentre la central nuclear, se habrán de evaluar una serie de aspectos relacionados con el PGV, que en algunos casos son coincidentes para las distintas fases, mientras que otros aspectos son característicos de una determinada fase en concreto, como es el caso de los PGE. A continuación se proporcionan directrices sobre los diferentes aspectos a evaluar durante la vida de diseño.

5.3.1. Aspectos Organizativos y de Gestión

Principales aspectos a evaluar:

a) Organización del explotador relacionada con la gestión del envejecimiento.

La evaluación deberá contemplar, en relación con la organización, grupo o comité creado en la central nuclear para la gestión de los aspectos relacionados con la gestión del envejecimiento:

i) Composición

El grupo o comité deberá estar integrado, preferiblemente, por expertos propios, en las diferentes disciplinas o actividades implicadas en los PGE.

De forma orientativa se detallan algunas de dichas disciplinas o actividades que pudieran estar involucradas:

(1) Mantenimiento (mecánico, eléctrico, I&C, etc.).
(2) Regla de Mantenimiento (RM).
(3) Modificaciones de Diseño (MD).
(4) Programas de Inspecciones en Servicio.
(5) Calificación ambiental.
(6) Pruebas Periódicas.
(7) Experiencia Operativa.
(8) Investigación y Desarrollo.
(9) Operación.

ii) Funciones y actividades a desarrollar por estos grupos

iii) Relaciones jerárquicas

iv) Frecuencia de reuniones, temas tratados y decisiones adoptadas.

v) Asegurar que en la organización existen personas responsables de los aspectos prácticos relacionados con los PGE.

vi) Asegurar que los recursos asignados son adecuados y suficientes.

vii) Asegurar que las responsabilidades a todos los niveles están claramente definidas.
viii) Asegurar que el personal implicado en las actividades de gestión del envejecimiento, dispone de los conocimientos necesarios en los aspectos específicos de esta materia.

En el PGV, así como en los informes periódicos asociados, se aportará información sobre todas las cuestiones anteriormente mencionadas. Ésta se complementará con la obtenida en las inspecciones realizadas por el OR a la central nuclear, relacionadas con la gestión del envejecimiento.

b) Adquisición y registro de información relacionada con la gestión del envejecimiento.

Acorde con la guía de seguridad NS-G-2.10 del OIEA, punto 4 [2] y el DT4, el explotador deberá contar con un sistema de adquisición y registro sistemático de datos que den soporte a los PGE.

El evaluador realizará comprobaciones encaminadas a valorar dicho sistema (datos, análisis, etc.), verificando sus principales características y efectividad.

Lo más apropiado es que este sistema se establezca al comienzo de la vida de diseño de la central nuclear, permitiendo contar con un historial de datos más completo. Esta información es fundamental para la toma de decisiones que eviten la pérdida de funcionalidad de equipos.

Los datos a registrar deberán estar relacionados con las distintas etapas del proceso de gestión. Especialmente significativos son los datos obtenidos como consecuencia de pruebas, inspecciones y controles relacionados con la aplicación práctica de los PGE. Esta información permitirá hacer un diagnóstico de los componentes y estructuras, así como establecer en consecuencia una estrategia de gestión que preserve su funcionalidad.

Se deberá evaluar además, la calidad documental, tanto de los aspectos metodológicos, como de los resultados de los análisis, los cuales deberán estar adecuadamente documentados y sujetos a los controles del sistema de calidad existente en la central nuclear.

c) Seguimiento de los compromisos con el OR.

Se habrá de evaluar el grado de avance o la resolución efectiva de los compromisos adoptados por el explotador como resultado de evaluaciones o inspecciones anteriores.

Para tal fin, y además de la información aportada en los informes periódicos, será fundamental la recabada durante las evaluaciones e inspecciones, donde este punto formará parte de la agenda de inspección.

5.3.2. Informes Periódicos

Los informes periódicos del PGV tienen como objetivo reportar al OR sobre las principales actividades relacionadas con la gestión del envejecimiento, realizadas por el explotador durante el período anterior. Dichos informes son documentos básicos que permiten conocer el avance y evolución de las actividades de gestión del envejecimiento realizadas por el explotador. Además, deben permitir conocer el estado actual de componentes y sistemas, lo que posibilitará la identificación de los mecanismos de degradación relacionados con el envejecimiento.
En **DT1** se proporcionan directrices generales relativas a estos informes.

A continuación, se señalan los puntos básicos que suelen ser tratados, de forma general, en estos informes, y cuyo adecuado desarrollo debe ser objeto de evaluación:

a) Actualizaciones de aspectos organizativos.

b) Resumen de reuniones y actividades realizadas en el seno del comité de gestión específico existente en la central nuclear para el desarrollo de las actividades y los PGE.

c) Actividades básicas de gestión de envejecimiento realizadas por el explotador durante el período (realización de nuevos análisis, o revisión y actualización de los existentes), incluyendo el listado actualizado de documentos y análisis previstos, con su revisión y estado.

d) Seguimiento de compromisos con el OR, resultados de las evaluaciones e inspecciones realizadas a la gestión del envejecimiento.

e) Resultados ligados a la aplicación de los PGE (actividades realizadas, estado de componentes y estructuras, nuevas propuestas de mejora, etc.)

f) Seguimiento de las propuestas de mejora (PM).

g) Resultados ligados a la participación de los representantes del explotador en grupos de investigación o de trabajo, relacionados con la gestión del envejecimiento de ESC.

5.3.3. Alcance y Selección de ESC

Dentro del gran conjunto de ESC de una central nuclear, gran parte pueden ser reemplazados durante una operación de rutina, pero existen otros cuyo reemplazo prematuro implicaría un costo elevado de dosis al personal o económico. Esto podría cuestionar la factibilidad de la continuidad de explotación de la central nuclear.

Para evitar situaciones de este tipo es importante que el explotador, previo al desarrollo de un PGV, realice un estudio de identificación y selección de las ESCC, estableciendo un esquema de priorización para ser abordados por una metodología de análisis durante el desarrollo del PGV.

En la práctica internacional, se reconocen diferentes metodologías para la selección de las ESC.

La evaluación se basa en que el explotador seleccionará la metodología que considere más adecuada para la realización de los análisis relativos al alcance y selección de las ESC y transmitirá al OR los fundamentos de la metodología seleccionada; el OR aprobará dicha metodología, imponiendo modificaciones, límites o condiciones, a la misma, si lo estima necesario.

En **DT1** se proporcionan directrices para establecer criterios en cuanto a alcance de ESC en un PGV, desde el punto de vista de la seguridad nuclear.

Siguiendo las directrices y criterios de dicha metodología, el explotador desarrollará los análisis necesarios de alcance y selección, con el objetivo final de definir, de forma concreta, aquellas ESC que entran dentro del alcance.
La información resultante, estará organizada por sistemas, o componentes tipo (agrupaciones tipo “commodity”). Es de esperar que cada componente o estructura dentro del alcance del PGV se encuentre identificado con un nombre o código específico. Esto facilitará la revisión de elementos presentes y ausentes en el listado final.

El explotador enviará un listado de las ESC dentro del alcance, que deberá contar con la aceptación del OR, previo a ser incluido en el PGV. Éste se reservará el derecho de requerir o recomendar la inclusión de otras ESC que no hayan sido contemplados por el explotador.

En base a lo anterior, los aspectos fundamentales a evaluar serán:

a) La metodología definida por el explotador para la determinación del alcance y selección de ESC que habrán de ser sometidas al proceso de gestión del envejecimiento.

b) El resultado de la aplicación de dicha metodología a las distintas ESC de la central nuclear.

La evaluación de los aspectos anteriores requerirá, por parte de los evaluadores, la utilización de documentación técnica diversa, principalmente las que forman parte de las condiciones de licencia de la central nuclear. A continuación, se nombran algunas:

A) Informe de seguridad (IS), bases de proyecto, especificaciones técnicas, procedimientos de operación normal, anormal y de emergencia e incluso las guías o procedimientos de gestión de accidentes severos;

B) Informes de calificación de los equipos con clase sísmica;

C) Informes relacionados con los sucesos externos naturales, tales como inundaciones, tormentas, huracanes, tornados, terremotos, tsunamis, etc., así como sucesos internos tales como riesgos de incendios, inundaciones internas;

D) Análisis probabilístico de seguridad (APS) para identificar ESC importantes desde el punto de vista del riesgo;

E) Estudio o análisis de calificación ambiental de los equipos eléctricos y de I&C;

F) Informes técnicos, presentados al OR, que tratan de fenómenos tales como transitorios de choque térmico a presión, transitorios sin parada automática del reactor y la pérdida total de energía eléctrica;

G) Documentación asociada a la aplicación de la RM a equipos, cuando sea aplicable;

H) Diagramas y planos de los sistemas importantes para la seguridad;

I) Análisis de aplicación de nueva normativa.
5.3.3.1. Evaluación de Aspectos Metodológicos para la Determinación del Alcance y Selección de ESC

5.3.3.1.1. Alcance

Los criterios utilizados para la selección de ESC son muy parecidos entre las metodologías que se usan a nivel internacional. Los criterios aplicables deberán ser acordes con los criterios del DT1:

a) Incluir aquellos elementos que deben seguir funcionando, durante y después de cualquier accidente base de diseño que pudiera producirse, para garantizar las siguientes funciones:

 i) la integridad de la barrera de presión del refrigerante del reactor,

 ii) la capacidad de parar el reactor y mantenerlo en una condición de parada segura; o

 iii) la capacidad de prevenir o mitigar las consecuencias de los accidentes, de modo que las exposiciones radiactivas fuera del emplazamiento se mantengan por debajo de los límites establecidos.

b) Incluir aquellos elementos cuyo fallo podría impedir el cumplimiento satisfactorio de cualquiera de las funciones identificadas en el punto anterior.

c) Incluir aquellos elementos con los que se cuenta en los análisis de seguridad de la central nuclear y que están relacionados con los requisitos de protección contra-incendios, calificación medioambiental, choque térmico a presión, transitorios sin parada automática del reactor y pérdida total de alimentación eléctrica.

Los aspectos principales que habrán de ser evaluados, relacionados con la metodología de determinación de alcance, son:

A) Metodología general empleada para la definición del alcance de componentes mecánicos, eléctricos, I&C, y estructuras.

En este punto se persigue evaluar el proceso general de alcance y selección, esto es, las distintas fases o etapas seguidas por el explotador en la definición de las ESC que habrán de ser sometidas al proceso de análisis de la gestión del envejecimiento. Se prestará especial atención a la lógica secuencial seguida en el análisis, documentos desarrollados en el proceso, herramientas informáticas utilizadas, etc.

Es de destacar que la metodología, aunque común en sus líneas generales, puede conllevar ciertas diferencias según se trate de componentes mecánicos, eléctricos, I&C o estructuras. Estas diferencias metodológicas habrán de ser comprobadas por el evaluador, con el propósito de verificar su efectividad en la definición del alcance.

El evaluador deberá incidir en las fuentes de información utilizadas por el explotador para la identificación de los componentes y estructuras de la planta, así como de las funciones propias desempeñadas por cada uno de ellos (bases de datos, planos, catálogos de fabricantes, documentos de las condiciones de licencia, etc.). Este aspecto será ilustrativo del grado de exhaustividad seguido en el proceso.
Se deberá verificar el modo de agrupación de componentes y estructuras por el que ha optado el explotador para la realización de los análisis de gestión del envejecimiento. El objetivo de esta comprobación es el aseguramiento razonable de que no existen omisiones de ESC.

En este sentido las posibilidades son dos:

i) Agrupación tipo “commodity”, entendiendo como tal la consideración conjunta de elementos con características o propiedades similares que justifican su consideración agrupada en los posteriores análisis de fenómenos de envejecimiento.

ii) Agrupación por sistemas, siguiendo la organización natural considerada en la central nuclear.

B) Identificación de funciones propias a nivel de sistemas y estructuras complejas.

Las funciones propias de un sistema o estructura compleja, son aquéllas que justifican su inclusión en el alcance por cumplir alguno de los criterios establecidos en DT1. Por lo tanto, se definirán límites o “porciones” del sistema o estructura que cumplan con al menos uno de los criterios.

En lo que a la evaluación se refiere, y a nivel metodológico, se verificará el uso que el explotador ha hecho del concepto de función propia dentro de su análisis de alcance.

C) Funciones propias a nivel de componente.

Se comprobará la identificación por parte del explotador de las funciones propias a nivel de componentes, entendiendo por tales aquéllas que contribuyen al alcance de la función propia del sistema o estructura al que pertenecen.

Los elementos del sistema o estructura compleja que entren en el alcance, cumplirán:

i) Que están dentro de los límites de alcance definidos para el sistema o estructura.

ii) Que, además, desempeñan individualmente una función propia.

La evaluación deberá prestar especial atención a aquellos componentes o estructuras que puedan tener varias funciones propias, tales como intercambiadores de calor u orificios restrictores, con objeto de asegurar que no se ha producido ninguna omisión, ya que la correcta identificación de funciones propias condicionará la posterior identificación de fenómenos de degradación.

D) Verificación de la identificación de las ESC cuyas funciones están relacionadas con la seguridad (RS), de acuerdo con el criterio 5.a o con el criterio 5.c del DT1.

Se habrá de evaluar, de forma específica, el orden seguido para la identificación de las ESC RS. Entrarán dentro del alcance las ESC con funciones propias claramente identificadas en los documentos que forman parte de las condiciones de licencia de la central nuclear. Serán típicamente las ESC de clase nuclear, con sus sistemas soporte, tal y como se encuentran en el IS, bases de diseño, etc.
Se evaluarán las fuentes documentales específicas consideradas por el explotador para esta definición, con el objeto de determinar si son lo suficientemente completas como para asegurar razonablemente la correcta identificación de las ESC implicadas.

E) Verificación de la identificación de las ESC cuyas funciones no están relacionadas con la seguridad (NRS), de acuerdo con el criterio 5.b del DT1.

Se evaluará el proceso seguido por el explotador para la identificación de aquellas ESC NRS, cuyo fallo pudiera impedir el cumplimiento de funciones relacionadas con la seguridad (de acuerdo con DT1). El explotador no solo deberá tener en cuenta la función propia desempeñada por cada ESC, sino también el conjunto de relaciones físicas y funcionales existentes entre los mismos.

En la evaluación, se tendrán en cuenta los siguientes aspectos:

i) La magnitud del análisis realizado por el explotador dependerá en gran medida de las fuentes de información utilizadas, por lo que se deberá verificar la extensión y adecuación de las mismas.

ii) Se comprobará que en el análisis el explotador ha considerado aquellos componentes o estructuras que en la base de diseño son identificados como NRS, pero cuyo fallo pudiera ocasionar el fallo de componentes de seguridad. La función propia de estos componentes suele identificarse en este contexto como NRS.

También se considerarán los identificados en la base de licencia como NRS, pero cuya función es la de proteger a componentes y estructuras RS ante el fallo o rotura de ciertos elementos con los que tienen relación espacial.

iii) Se verificará que el explotador ha procedido a la identificación de elementos NRS, pero que están físicamente conectados a componentes RS (típicamente tuberías).

iv) Por último, se comprobará que el explotador ha analizado el caso de aquellos componentes NRS, que sin estar conectados físicamente a componentes RS, tienen una relación espacial de proximidad con ellos tal que su fallo podría impedir el cumplimiento de las funciones propias de estos últimos. Lo anterior es igualmente válido si existe una relación entre ambos tipos de carácter funcional.

Los componentes que cumplan los requisitos antes mencionados entrarán dentro del alcance por la función NRS. Para la valoración de las relaciones (espaciales y funcionales) entre componentes, se tomarán en consideración los siguientes aspectos:

(1) Si el elemento de seguridad posee un diseño calificado para cumplir con su función propia, se entiende que está preparado para soportar las condiciones provocadas por el fallo del componente NRS. Por lo tanto, no será necesario incluir este último dentro del alcance. Esto será válido también en caso de que el elemento de seguridad esté diseñado siguiendo el criterio de “fallo seguro”.

(2) En el caso de que el componente o estructura NRS contenga en su interior aire o gas, su rotura no será considerada como una amenaza.
(3) Si la afectación entre componentes es de tipo espacial, el explotador podrá incluir dentro del alcance los elementos de protección existentes con función mitigadora, en lugar de los elementos NRS con posibilidad de fallo.

(4) No se considerará aceptable la no inclusión, dentro del alcance, de un elemento NRS con posibilidad de afección a otro RS, en base al argumento de que existen varias redundancias de este último.

(5) Aquellos equipos NRS que, mejorados mediante programas de vigilancia o de monitorización adecuados, son empleados para el mantenimiento de las hipótesis de partida de los análisis de diseño, no han de ser incluidos dentro del alcance. Se considera que en este caso los programas, requisitos y restricciones de tipo regulador que ya existen para los mismos, aseguran el control de su envejecimiento.

(6) Se aplicará el criterio de que cualquier disfunción en una ESC del tipo NRS que traiga consigo la actuación de una ESC RS, no justifica su inclusión dentro del alcance ya que no presupone la pérdida de la función propia de este último.

(7) En el caso de aquellas ESC del tipo NRS que actúan como soporte de otras calificadas como de seguridad, se deberá considerar la cascada de afecciones hasta un nivel de relación similar al que haya sido establecido en las condiciones de licencia.

Tal sería el caso, por ejemplo, de una bomba de refrigeración considerada como componente de seguridad, cuyo sistema de sellos es refrigerado por una bomba no de seguridad, que a su vez es alimentada por un sistema eléctrico no de seguridad.

F) Identificación de las ESC relacionadas con ciertos requisitos reguladores.
Se evaluará el proceso seguido por el explotador para la identificación de aquellas ESC que cumplen el criterio 5.c del DT1, relacionados con requisitos de protección contra incendios, calificación ambiental, choque térmico a presión, transitorios sin parada automática del reactor y pérdida de alimentación eléctrica.
Para evaluar este aspecto se comprobarán fundamentalmente las fuentes documentales específicas consideradas por el explotador para dicha determinación. El objetivo de la evaluación será por tanto verificar si las fuentes documentales utilizadas son lo suficientemente completas como para asegurar razonablemente la correcta identificación de los ESC implicados.

G) Asociaciones especiales de elementos.

Se habrán de evaluar ciertas asociaciones particulares de componentes o estructuras realizadas por el explotador que a priori no resultan evidentes por pertenecer a distintos tipos de elementos. Por ejemplo, los soportes de tubería, o las bandejas de cables, los cuales podrían ser incluidos dentro de la categoría de estructura, y no dentro de la categoría de componente mecánico o eléctrico como a priori pudiera esperarse.
H) Desglose de componentes complejos en subcomponentes.

Otro aspecto que deberá ser evaluado es la realización, por parte del explotador, de un desglose sistemático de componentes complejos en subcomponentes con distintos materiales y ambientes (ejemplo el caso de un intercambiador de calor, en el cual habría de distinguirse entre los tubos, carcasa, pernos, toberas, placa distribuidora y placa soporte, etc., ya que los materiales y ambientes en cada caso serán diferentes).

I) Componentes dentro del alcance por criterio de explotación.

Aquello componentes o estructuras que el explotador decida incluir en el alcance por razones de disponibilidad, coste de sustitución, etc., habrán de estar claramente diferenciados de los que cumplen los criterios de alcance de seguridad del DT1. Por lo que habrá que verificar que se presenta por separado la información sobre estos elementos de interés por criterio de explotación.

5.3.3.1.2. Selección

Una vez evaluados los aspectos metodológicos relacionados con el proceso de definición del alcance, se continuará con la evaluación de los aspectos ligados al proceso de selección de componentes y estructuras.

El proceso de selección se realiza sobre la base de los componentes y estructuras obtenida como resultado del proceso de alcance.

A nivel internacional, los criterios de selección de ESC son muy parecidos entre sí. Entre ellos están los siguientes:

a) Componentes pasivos cuyo reemplazo prematuro implicaría un costo elevado de dosis al personal o económico, que podría cuestionar la factibilidad de la continuidad de la explotación de la central nuclear. Los componentes activos deben ser adecuadamente controlados por la aplicación de mantenimientos preventivos o correctivos durante una operación de rutina. Estas estructuras y componentes pasivos:

i) Incluyen entre otros, la vasija del reactor, la barrera de presión del refrigerante del reactor, generadores de vapor, presurizador, tuberías, carcasas de bombas, cuerpos de válvulas, alimentadores, canales combustibles, calandría, el barrilete del núcleo, soportes de componentes, barreras de retención de presión, intercambiadores de calor, carcasas de ventiladores, conductos de ventilación, la contención, el revestimiento metálico de la contención, penetraciones eléctricas y mecánicas, esclusas de equipos, estructuras sísmicas de Categoría 1, cables y conexiones eléctricas, bandejas de cables y cajas eléctricas.

ii) Excluyen entre otros, bombas (excepto la carcasa), válvulas (excepto el cuerpo), motores, generadores diesel, compresores de aire, amortiguadores, el accionamiento de las barras de control, compuertas de ventilación, transmisores de presión, indicadores de presión y nivel, conmutadores, ventiladores (excepto la envolvente), baterías, interruptores, relés, inversores de potencia, tarjetas electrónicas, cargadores de batería y fuentes de alimentación eléctricas.
b) Han de ser componentes o estructuras no incluidos en ningún programa de sustitución basado en el mantenimiento de la vida calificada o cualquier otro programa de sustitución.

A continuación, se muestran dos ejemplos, sintetizados en esquemas, de metodologías de alcance y selección de ESC, en las Figuras 1 y 2. Previo al desarrollo del PGV o PEV, y acorde a los criterios de identificación y selección de las ESC, se establece un esquema de priorización de ESC importantes para la seguridad o de relevancia económica.

Se omite el análisis de los ESC menos importantes, que sólo suponen un riesgo residual, en la Figura 1.

El OR aprobará, imponiendo modificaciones, límites o condiciones, si lo considera necesario, esta metodología. El explotador, aplicando dicha metodología, preparará un listado de los ESC resultantes, que deberán contar con la aceptación del OR, previo a ser incluidos en el PGV. Éste se reservará el derecho de requerir o recomendar la inclusión de otras ESC que no hayan sido contempladas por el explotador.

Figura 1. Esquema de Alcance y Selección de ESC importantes para la seguridad o de relevancia económica para ser tratados en un PGV, de una central nuclear CANDU.
Respecto a los enfoques metodológicos adoptados por parte del explotador, la experiencia práctica demuestra que los aspectos a ser evaluados en relación con la metodología de selección son muy similares salvo algunas pequeñas excepciones.

Los aspectos principales a evaluar, relacionados con la metodología de selección, son los señalados a continuación:

A) Proceso de identificación de componentes pasivos.

Se verificará que el explotador ha seguido un procedimiento efectivo para la identificación de aquellos componentes y estructuras dentro del alcance, que son de tipo pasivo.

Frecuentemente, la forma de proceder consiste en realizar algún tipo de consulta selectiva a alguna base de datos de componentes y estructuras de la central nuclear, en cuyo caso, la evaluación se centrará en la comprobación de la estructura de la base de datos, tipo de consulta realizada, totalidad del contenido de la misma, etc.

Cuando no haya sido éste el procedimiento seguido, y también, en aquellos otros casos en los que el explotador haya empleado como método complementario a la utilización de la base de datos, el análisis manual de documentación diversa de planta, la evaluación deberá comprobar estas fuentes y su adecuación para el fin del proceso de selección. Estas verificaciones se fundamentarán principalmente en la información recabada como parte de una inspección en planta.

Figura 2. Esquema de alcance y selección de ESC para un PGV de una central PWR, BWR o PHWR con vasija
B) Identificación de las partes pasivas de componentes activos.

Se deberá verificar que la metodología seguida por el explotador, asegura la inclusión de las partes pasivas de componentes activos, tales como carcasas de bombas, ventiladores, válvulas, etc.

C) Componentes que experimentan cambios en sus propiedades

La evaluación deberá asegurar que la metodología empleada garantiza la no selección de aquellos componentes, aparentemente pasivos, pero que experimentan un cambio en sus propiedades, estado, etc. (típicamente muchos equipos de instrumentación).

D) Identificación de componentes de larga vida.

Se evaluará finalmente el proceso de identificación seguido por el explotador de los componentes que estando dentro del alcance, y siendo pasivos, además son de larga vida, o sea, no están sometidos a ningún programa de sustitución periódica durante la vida de la central nuclear.

Se verificarán las fuentes de información utilizadas por el explotador, típicamente procedimientos de mantenimiento, registros de órdenes de trabajo, catálogos y recomendaciones del suministrador, etc.

5.3.3.2. Evaluación de los Resultados Ligados a la Aplicación de la Metodología de Alcance y Selección de ESC

El objetivo de esta sección es proporcionar directrices para que el evaluador compruebe que la metodología de alcance y selección ha sido correctamente aplicada y los resultados obtenidos son satisfactorios.

En este sentido, y salvo casos particulares que así lo justifiquen, la metodología a seguir por la evaluación será la de muestreo, esto es, la selección de un conjunto finito de ESC sobre los que aplicar los criterios de evaluación.

Si al evaluar la muestra inicial, los resultados no son satisfactorios, entonces se podrá ampliar la muestra. Los criterios para la selección de las muestras serán diversos y en cualquier caso adaptados al elemento objeto de evaluación, así como a la fase en la que se encuentre la central nuclear.

Algunos criterios de carácter general que pueden ser aplicados para la determinación de muestras de evaluación son los basados en la identificación de:

a) ESC especialmente importantes para la seguridad.

b) ESC con mayor preponderancia en las evaluaciones de APS.

c) ESC representantes de diferentes categorías o tipos (reactor e internos, salvaguardias, sistemas auxiliares, sistemas eléctricos e I&C, etc.).

d) ESC recomendados por la experiencia operativa propia o ajena.
e) ESC con condiciones operativas especialmente críticas, o materiales y ambientes especialmente vulnerables.

f) ESC con atributos de diseño no totalmente demostrados mediante pruebas.

g) ESC con múltiples funciones en la RM, si es aplicable, o que son soporte de múltiples sistemas.

h) ESC no evaluados en el pasado.

i) ESC que han sufrido cambios por modificaciones de diseño, reparaciones, etc.

Tomando como base las consideraciones anteriores, a continuación se señalan los principales aspectos a evaluar:

A) Resultados generales a nivel de sistemas y estructuras complejas.

i) Contenido de la lista final de sistemas y estructuras complejas.

Se comprobará a partir de la lista final de sistemas y estructuras complejas resultantes del proceso de alcance, que de forma general no están ausentes de la misma ciertos sistemas y estructuras claramente esperados por las funciones propias desempeñadas.

Como complemento a la evaluación anterior, se seleccionará algún sistema o estructura no incluido en la lista del alcance, con objeto de verificar que efectivamente no desempeña ninguna función propia.

ii) Proceso de determinación de los sistemas y estructuras dentro del alcance.

Con objeto de comprobar la correcta implementación de la metodología, se seleccionarán varios de los sistemas y estructuras dentro de la lista final, comprobando en cada caso la correcta identificación de sus funciones propias y consecuentemente las porciones del sistema dentro del alcance.

B) Resultados a nivel de componentes de tipo mecánico.

Clásicamente, estos componentes pertenecerán a sistemas dentro de alguna de las siguientes categorías:

i) Sistemas de refrigeración del reactor (vasija e internos, barrera de presión, generadores de vapor, etc.).

ii) Sistemas de salvaguardias tecnológicas (sistema de rociado de la contención, sistema de aislamiento de la contención, sistema de inyección de alta presión, etc.).

iii) Sistemas auxiliares (sistemas de ventilación, sistemas de refrigeración, etc.).

iv) Sistemas de vapor y conversión de potencia (turbina, sistema de vapor principal, sistema de condensado, etc.).
Para componentes de tipo mecánico, la evaluación se centrará en la realización de las siguientes comprobaciones:

I) Identificación de componentes mecánicos dentro del alcance y selección.

Se partirá de los sistemas previamente seleccionados, para comprobar la correcta identificación de componentes individuales dentro del alcance, en base a la función propia que estos desempeñan.

Se prestará especial atención a los componentes frontera entre porciones dentro y fuera del alcance, así como a aquellos que, estando dentro de los límites de alcance del sistema, el explotador haya concluido que no están dentro del alcance a nivel de componente. En este último caso, se comprobará el razonamiento que avala su no inclusión.

Para los componentes identificados dentro del alcance, se verificará que efectivamente son pasivos y de larga vida.

II) Caso particular de agrupaciones tipo “commodity”.

En aquellos casos en los que el explotador haya optado por organizar los componentes en agrupaciones tipo “commodity”, se elegirán varias de estas agrupaciones y se comprobará que ciertos componentes significativos de la planta, están dentro de la lista asociada a dicha agrupación.

Se elegirán algunos componentes NRS dentro del alcance del criterio 5.b del DT1. Se verificará, a través del análisis realizado por el explotador, que los aspectos metodológicos relacionados con este criterio han sido correctamente aplicados, obteniéndose resultados satisfactorios.

Para los componentes identificados dentro del alcance, se revisará que efectivamente son pasivos y de larga vida.

III) Comprobación específica de los criterios de selección.

Adicionalmente, y de forma complementaria a las verificaciones anteriores, se escogerán varios componentes dentro del alcance (esto es, con función propia definida), pero que finalmente no han sido seleccionados, comprobando que estos no cumplen con alguno de los criterios de selección (pasivo y larga vida), estando su exclusión adecuadamente fundamentada.

C) Resultados a nivel de estructuras y componentes estructurales.

Típicamente, las estructuras y componentes estructurales resultantes del proceso de alcance y selección, estarán dentro de alguna de las siguientes categorías:

i) Estructura de la contención primaria.

ii) Otras estructuras principales, tales como la estructura del edificio de los generadores diesel de emergencia, edificio auxiliar y edificio de turbina, etc.
Componentes estructurales, tales como bandejas de cables, soportes de tuberías, elastómeros para mitigar vibraciones, soportes de equipos, soportes de conductos de ventilación, etc. Estructuras no de seguridad, pero cuyo fallo podría impedir la realización de la función de seguridad de un componente o estructura de seguridad, como por ejemplo, estructuras de categoría sísmica II respecto a otras de categoría sísmica I.

Para las estructuras y componentes de tipo estructural, la evaluación se centrará en la realización de las comprobaciones siguientes:

1. Identificación de estructuras y componentes estructurales dentro del alcance.
 Se seleccionarán varias estructuras complejas dentro del alcance (Ej. edificio de contención), verificando que se han identificado correctamente las estructuras y componentes estructurales con función propia (cimentaciones, losas, bandejas de cable, soportes de tubería y conductos de ventilación, bordillos, bastidores, fuelles, muros de contención, revestimientos o "liners", penetraciones mecánicas, sumideros, etc.) que pertenecen a la misma. Se verificará que la función propia está claramente identificada en todos los casos, y que en base a la misma se ha justificado su inclusión dentro del alcance.

2. Casos particulares de agrupaciones tipo “commodity”
 Si el explotador ha optado por organizar los análisis en agrupaciones tipo “commodity”, se seleccionará alguna de las agrupaciones relativas a estructuras complejas comprobando que ciertos componentes estructurales, englobados en la misma y que deberían estar dentro del alcance por la función propia que desempeñan, están efectivamente dentro de la lista asociada a la “commodity” estructural.

3. Comprobación de los criterios de selección
 La mayor parte de las estructuras y componentes estructurales dentro del alcance cumplirán con los criterios de selección, por ser pasivas y de larga vida. La comprobación se centrará en la justificación aportada por el explotador en aquellos casos excluidos de la lista final por razones de selección.

D) Resultados a nivel de componentes de tipo eléctrico e I&C.

Los componentes típicos de esta área serán cables, barras de fase, conductores de alta tensión, penetraciones eléctricas, conductores de tierra, conectores, aisladores, etc.

La evaluación se centrará en las comprobaciones siguientes:

i) Identificación de componentes de tipo eléctrico e I&C dentro del alcance y selección.
Se seleccionarán varios sistemas eléctricos y de I&C dentro del alcance, comprobando que se han identificado correctamente los componentes individuales, tomando como base la función propia desempeñada por cada uno de ellos.

Se comprobará adicionalmente, que dichos componentes son de tipo pasivo y de larga vida.

ii) Caso particular de agrupaciones tipo "commodity"

En los casos en los que el explotador haya optado por organizar los componentes en agrupaciones tipo "commodity", se elegirán varias de estas agrupaciones y se comprobará que ciertos componentes significativos, claramente dentro del alcance por la función propia que desempeñan, están dentro de la lista de componentes de dicha agrupación. Se comprobará que se traten de componentes de tipo pasivo y de larga vida.

En componentes NRS que por su función propia característica deberían de estar incluidos dentro del alcance por el criterio 5.b del DT1, se verificará, a través del análisis ligado a los mismos, que los aspectos metodológicos relacionados con este criterio han sido correctamente aplicados por el explotador, obteniéndose resultados satisfactorios.

iii) Comprobaciones ligadas al "análisis por áreas"

El “análisis por áreas” consiste en el análisis de un conjunto de componentes, pertenecientes a diversos sistemas eléctricos y de I&C, que están dentro del alcance, todos ellos con función propia, ubicados dentro de un mismo recinto o área y que superan las condiciones ambientales límite características de ese recinto o área.

Cuando el explotador haya utilizado para la determinación del alcance la metodología de “análisis por áreas”, se seleccionará una o varias de las áreas dentro del alcance, comprobando que se han considerado aquellos componentes individuales que la integran.

Adicionalmente, se seleccionará una o varias de las áreas no incluidas dentro del alcance, con objeto de comprobar que no existen componentes con funciones propias que superen los criterios de inclusión.

iv) Comprobación específica de los criterios de selección

Adicionalmente, y de forma complementaria a las verificaciones anteriores, se escogerán varios elementos dentro del alcance pero que finalmente no han superado los criterios de selección. Se comprobará que su exclusión está adecuadamente justificada.

v) Calificación ambiental.

Se verificará que han sido adecuadamente identificados todos aquellos componentes eléctricos y de I&C, que siendo pasivos y de larga vida, están además someti-
5.3.4. Revisión de la Gestión del Envejecimiento

En este apartado, el objetivo principal de la evaluación será asegurar que los efectos del envejecimiento en las ESC son adecuadamente gestionados, de tal forma que las funciones propias correspondientes sean mantenidas a lo largo de la vida útil de la central nuclear.

Previo a entrar en los aspectos a evaluar relacionados con este punto, se considera oportuno realizar una síntesis de cómo se gestiona el envejecimiento según distintos enfoques. Esto ayudará a entender cuáles aspectos cubre la metodología y en definitiva qué es lo que se debe evaluar.

Es importante mencionar que a pesar de que las metodologías son diferentes, todas tienden a asegurar adecuadamente la gestión del envejecimiento de las ESC de las centrales nucleares.

En aquellas centrales nucleares que no han utilizado como referencia básica la metodología estadounidense de gestión de envejecimiento, como es el caso de las de tipo CANDU, la implementación de la gestión del envejecimiento se realiza a través de un proceso de gestión de vida único que se desarrolla a través de 3 fases (ver Figura 5).

A continuación, se realiza una síntesis de cómo se aplica y qué aspectos cubre un PGV, basado en la metodología CANDU, comparándolo con la metodología estadounidense; junto con la descripción del proceso, se proporcionan algunas directrices para su evaluación por el OR. Después se proporcionan directrices generales para la evaluación de los distintos aspectos asociados a la revisión de la gestión del envejecimiento.

5.3.4.1. Fases y Contenidos de un PGV

5.3.4.1.1. PGV para centrales nucleares CANDU

Fase I

La Tabla A muestra los pasos que contiene la Fase I de un PGV para centrales con reactores tipo CANDU, de acuerdo con la metodología desarrollada por AECL conocida como “Plant Life Management for CANDU Reactors” [18]. El primer paso de dicha fase es elaborar la política, planes y procedimientos que delinearán las reglas básicas para llevar a cabo su implementación en la central nuclear. Conviene aclarar que este paso es similar al de la metodología estadounidense de gestión del envejecimiento.

El desarrollo de esta fase consiste en el análisis de ESCC, mediante la implementación de metodologías de evaluación, entre ellas las evaluaciones de estado, evaluaciones de vida y evaluación sistemática de mantenimiento. Dichas metodologías son aplicables para centrales tipo CANDU, y no están contempladas en la metodología estadounidense.

Estas evaluaciones son soportadas por los programas de planta en curso y demandan un análisis para garantizar que todos los efectos de envejecimiento sean considerados. Dichos análisis son sistemáticos, rigurosos y se adaptan a la complejidad de la ESC.
Tabla 1. Resumen de las etapas de un PGV para una central CANDU

<table>
<thead>
<tr>
<th>Política del PGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Define los elementos principales del programa.</td>
</tr>
<tr>
<td>• Define los roles y responsabilidades: puede incluir el personal específico para el PGV, así como también la estructura de la organización necesaria.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programa</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Detalles del programa en general y estrategias: metas específicas y cronograma.</td>
</tr>
<tr>
<td>• Identificación de entrenamientos, herramientas y fuentes de información necesarias.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedimientos para los análisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Proceso de implementación.</td>
</tr>
<tr>
<td>• Proceso de priorización.</td>
</tr>
<tr>
<td>• Procedimiento de implementación de la gestión de vida y medición de la efectividad (performance).</td>
</tr>
<tr>
<td>• Evaluación de estado.</td>
</tr>
<tr>
<td>• Evaluación de vida.</td>
</tr>
<tr>
<td>• Evaluación sistemática de mantenimiento.</td>
</tr>
<tr>
<td>• Proceso para el seguimiento de los análisis.</td>
</tr>
<tr>
<td>• Aseguramiento de la calidad.</td>
</tr>
<tr>
<td>• Verificación del plan.</td>
</tr>
<tr>
<td>• Proceso de realimentación y mejoras.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metodologías de Evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Evaluación de estado.</td>
</tr>
<tr>
<td>• Evaluación de vida.</td>
</tr>
<tr>
<td>• Evaluación sistemática de mantenimiento.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informe de Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>El objetivo de un informe de estado es establecer la condición actual de las ESC y proveer un pronóstico de vida de los mismos, tanto para alcanzar su vida de diseño, como su posible extensión (operación a largo plazo). Esto se basa en el estudio en detalle de los mecanismos de degradación y el desarrollo de modelos que permitan predecir su comportamiento (ver Figura 3 para la Fase I).</td>
</tr>
</tbody>
</table>

Los resultados de esta etapa o Fase I serán volcados en un informe de estado, el cual proveerá una evaluación preliminar sobre la degradación por envejecimiento de las ESC seleccionadas (Fase II).

Además, este informe de estado propondrá los trabajos de investigación y desarrollo que deberán concretarse en la fase posterior (Fase III), para una mejor comprensión de los mecanismos de envejecimiento, su monitoreo y las acciones de mitigación necesarias.

El informe de estado, contemplado en la metodología PGV de los CANDU, deberá mantenerse permanentemente actualizado. Estas actualizaciones deberán realizarse luego de las revisiones programadas, ya que las mismas aportan importante información sobre las ESC, o bien cuando otros eventos o cambios relevantes así lo aconsejen. Luego de emitir el informe de estado inicial...
o una de sus actualizaciones, se deberá efectuar una evaluación del mismo considerando especialmente las propuestas para la gestión de envejecimiento. Estas propuestas pueden incluir desde cambio en la química de los sistemas, modificaciones en los procedimientos de operación, nuevos métodos de monitoreo, estudios más detallados de mecanismos de degradación, modificación, reparación, o reemplazo de ESC, etc.

Figura 3. Esquema básico de la Fase I del PGV - CANDU.

El contenido típico de un informe de estado se puede apreciar en la siguiente Tabla B.

El análisis de las posibles variantes para resolver los problemas planteados debe realizarse teniendo en cuenta la aceptabilidad de las soluciones propuestas, por parte del OR, que, además realizará las siguientes actividades:

a) Revisará los informes de estado de las ESC importantes para la seguridad o RS, verificando que la metodología de evaluación es adecuada.

b) Controlará que el informe refleje la situación real de planta y que esté completo.

c) Evaluará si las técnicas de inspección u obtención de datos son las adecuadas y si el personal que las realiza tiene la cualificación y entrenamiento exigidos.

d) Evaluará si las recomendaciones son suficientes, o adecuadas y se identificarán las desviaciones.

e) Determinará las recomendaciones críticas para la seguridad.
f) Realizará el control de la implementación de las recomendaciones o modificaciones.

g) Podrá requerir, un aumento de la frecuencia y el alcance de la inspección a una ESC determinada.

Tabla 2. Aspectos a tener en cuenta en un informe de estado de una ESC.

<table>
<thead>
<tr>
<th>TEMAS</th>
<th>CONTENIDO MÍNIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN Y OBJETIVOS</td>
<td>• Descripción</td>
</tr>
<tr>
<td>• Funciones</td>
<td>• Alcances y contornos</td>
</tr>
<tr>
<td>• Códigos y especificaciones de diseño</td>
<td>• Cambios de diseño</td>
</tr>
<tr>
<td>• Calificación ambiental</td>
<td>• Priorización de subcomponentes</td>
</tr>
<tr>
<td>• Construcción / Fabricación, montaje y materiales</td>
<td>• Referencias</td>
</tr>
<tr>
<td>• Anexos</td>
<td></td>
</tr>
<tr>
<td>DESCRIPCIÓN Y FUNCIONES</td>
<td>• Registro cronológico de eventos</td>
</tr>
<tr>
<td>• Controles de la química</td>
<td>• Referencias</td>
</tr>
<tr>
<td>• Anexos</td>
<td></td>
</tr>
<tr>
<td>HISTORIAL DE OPERACIÓN</td>
<td>• Mantenimientos correctivos</td>
</tr>
<tr>
<td>• Mantenimientos preventivos e inspecciones</td>
<td>• Mantenimientos predictivos</td>
</tr>
<tr>
<td>• Obsolescencia / Información del fabricante</td>
<td>• Referencias</td>
</tr>
<tr>
<td>• Anexos</td>
<td></td>
</tr>
<tr>
<td>MANTENIMIENTO E INSPECCIONES</td>
<td>• Mecanismos de degradación posibles</td>
</tr>
<tr>
<td>• V.2. Evaluación de los mecanismos de degradación existentes en la central nuclear</td>
<td>• Matriz de mecanismos de degradación</td>
</tr>
<tr>
<td>• Referencias</td>
<td>• Anexos</td>
</tr>
<tr>
<td>• Anexos</td>
<td></td>
</tr>
<tr>
<td>EVALUACIÓN DE MECANISMOS DE DEGRADACIÓN</td>
<td>• Conclusiones</td>
</tr>
<tr>
<td>• Pronóstico de vida</td>
<td>• Recomendaciones</td>
</tr>
<tr>
<td>• Anexos</td>
<td></td>
</tr>
</tbody>
</table>

Sobre cada ESC se efectúa un seguimiento permanente, a partir de los datos que aportan la operación, el mantenimiento, el programa de inspección en servicio, los programas de vigilancia, experiencia operativa, etc.

Del análisis particular de cada informe de estado, se realiza una evaluación general del conjunto de los informes de estado y de los informes de evaluación técnico-económica. El resultado se
refleja en un informe integral de estado sobre la gestión del vida de la central nuclear, tal como se refleja en la Figura 4.

Figura 4. Esquema del informe integral de estado de una central nuclear CANDU.

Fase II

Esta etapa comprende un estudio detallado sobre el conocimiento del envejecimiento, con el propósito de profundizar las conclusiones obtenidas en la etapa de los estudios preliminares, particularmente aquellos puntos débiles relacionados tanto con la tecnología, como con el funcionamiento de seguridad de la ESC durante su vida útil.

Principales tareas previstas:

a) Estudios de investigación y desarrollo para mejorar el conocimiento actual de mecanismos significativos del envejecimiento y determinar las causas raíces de la degradación por envejecimiento de la ESC.

b) Estudios sobre el monitoreo del envejecimiento con el objeto de verificar el diagnóstico existente y las técnicas de evaluación de datos existentes o desarrollar nuevas, capaces de detectar oportunamente la degradación por envejecimiento de la ESC.

c) Estudios sobre la mitigación del envejecimiento para mejorar los existentes o desarrollar nuevos métodos, prácticas de operación y mantenimiento o nuevos diseños, necesarios para controlar la degradación por envejecimiento de la ESC.

d) Preparación del informe de esta etapa detallando las conclusiones obtenidas en los puntos anteriores.
Fase III

Esta fase contempla el Proyecto de Extensión de Vida (PEV) de una central nuclear tipo CAN-DU e incluye las tareas de modernización, reacondicionamiento y operación a largo plazo.

En caso que las evaluaciones realizadas a las ESC en las fases anteriores arrojaran que se alcanza la vida de diseño en buen estado, esto permitiría al explotador postular la posibilidad de encarar un PEV con vista a la operación a largo plazo.

En esta Fase III se realizan los estudios técnicos y económicos que respaldan tal decisión, así como también la ingeniería del PEV y la implementación de cambios de modernización y reacondicionamiento que garantizarán la operación a largo plazo de la planta en condiciones seguras y económicas (ver Figura 5).

Figura 5. Fases de un proceso de gestión de vida en un reactor CANDU.

5.3.4.1.2. PGV para PWR, BWR y PHWR con vasija

Para hacer referencia a un PGV la metodología estadounidense utiliza la terminología de los Programas de Gestión del Envejecimiento (PGE), que en una central nuclear suelen ser varios.

Los PGE son un conjunto estructurado de actividades encaminadas a la vigilancia, control y mitigación de los efectos de envejecimiento que afectan a las ESC importantes para la seguridad. Los PGE se basan en prácticas diversas de mantenimiento predictivo, preventivo y correctivo, programas de calificación ambiental, pruebas periódicas y vigilancias de las Especificaciones Técnicas, programas de inspección en servicio, programas de erosión-corrosión, etc., así como cualquier otra actividad de tipo específico con el mismo fin que pudiera realizarse en la central nuclear.
Es importante destacar que, siguiendo la metodología estadounidense, ciertos sistemas o conjuntos de agrupaciones tipo "commodity" se agrupan en PGE específicos los cuales tienen un conjunto de actividades de mantenimiento, inspección y control semejante.

Para la evaluación, se parte del listado final de sistemas y componentes de tipo mecánico, eléctrico y de I&C, así como de estructuras (incluyendo componentes estructurales), que han superado la fase de alcance y selección.

La secuencia lógica de desarrollo del análisis de la gestión del envejecimiento supone, en primer lugar, la determinación de los materiales y ambientes correspondientes a los distintos elementos dentro del alcance y selección. A continuación, y en base a estos dos parámetros fundamentales, se identifican los mecanismos y efectos de envejecimiento asociados. Finalmente, se definen los PGE adecuados para el control de los mecanismos y efectos de envejecimiento anteriormente identificados.

Al igual en la fase de alcance y selección, el explotador habrá definido una metodología general para la realización de los análisis asociados. Como resultado de la aplicación de las directrices y criterios de dicha metodología, éste elaborará los análisis específicos de identificación de mecanismos y fenómenos de envejecimiento, y acometerá la definición de los PGE necesarios.

En consecuencia, se plantea una estrategia de evaluación semejante a la de la fase de alcance y selección, consistente, en primer lugar, en la revisión de los aspectos generales de tipo metodológico, para a continuación comprobar los resultados obtenidos fruto de la aplicación de la metodología plantead.

5.3.4.1.3. Evaluación de Aspectos Metodológicos Relacionados con la Revisión de la Gestión del Envejecimiento

La evaluación de aspectos metodológicos se centrará en las siguientes cuestiones:

a) Criterios generales seguidos por el explotador para la definición de materiales y ambientes.

Se verificará que los criterios y metodología definida por el explotador permiten la obtención de un conjunto de materiales y ambientes (internos y externos), representativos de la casuística existente en los distintos estados operativos a considerar en el análisis. Se revisará la documentación soporte empleada por el explotador, herramientas informáticas de apoyo (bases de datos), etc., y en general el orden de análisis empleado en la identificación de materiales y ambientes.

Se habrá de comprobar, adicionalmente, que el explotador ha generado una definición lo suficientemente detallada de materiales y ambientes (internos y externos) para su utilización en los análisis.

b) Estados operativos considerados en los análisis.

Se habrá de comprobar que el explotador ha considerado los distintos estados operativos que tienen importancia en el análisis de la gestión del envejecimiento, en tanto que estos condicionan los ambientes y fenómenos de degradación que afectan a las ESC (operación normal, pruebas funcionales periódicas, periodos de recarga, etc.).
c) Consideración de la experiencia operativa.

Se verificará la utilización, por parte del explotador, de una metodología sistemática para la consideración de la experiencia interna y externa (nacional e internacional) en la identificación de mecanismos de degradación y efectos de envejecimiento, así como en la definición de los PGE.

d) Referencias documentales y otras fuentes de información

Se verificarán las fuentes específicas utilizadas por el explotador para la identificación de mecanismos y fenómenos de degradación, así como para la definición de los PGE.

Adicionalmente, se comprobará que el explotador considera en sus análisis y programas, la información de programas de investigación, *Generic Safety Issues* (GSI), nuevos procedimientos de medida y ensayo, etc.

e) Proceso de definición de mecanismos y fenómenos de degradación

Se habrá de verificar el procedimiento específico seguido por el explotador para la asignación de mecanismos y fenómenos de degradación.

Es habitual que se definan agrupaciones características "material-ambiente" (“grupos RGE”), que se describen en el apartado 4.3.4.3 de esta guía, ya que estos dos aspectos condicionan los mecanismos de degradación actantes. Cada grupo RGE tendrá así asociada un grupo de mecanismos y fenómenos de degradación potencialmente ocurrentes. En paralelo, se procede a la agrupación de los elementos dentro del alcance en función de estas dos variables, para a continuación proceder a la asignación de mecanismos mediante la casación de los grupos de elementos con los grupos RGE correspondientes.

Todo lo anterior suele apoyarse en herramientas informáticas que facilitan el proceso de agrupación y casación mencionadas.

Se habrá de comprobar que el explotador contempla la detección de ciertos elementos que constituyen casos particulares derivados de las circunstancias específicas en las que se encuentran determinadas ESC (zonas de estancamiento de flujo, zonas de aceleración de flujo, ambientes especialmente agresivos, etc.). De esta forma, estos componentes pueden que no cumplan lo establecido para su grupo, o bien que estén sometidos a mecanismos adicionales que el explotador habrá de ser capaz de identificar.

Se comprobará que la metodología contempla la definición de mecanismos de degradación y efectos de envejecimiento en relación con la función propia que el componente o estructura desempeña en el sistema. Se prestará especial atención a aquellos componentes o estructuras con varias funciones propias. En estos casos, se habrán de definir los efectos y mecanismos de degradación específicos ligados a cada una de ellas.

Para aquellos elementos que aún perteneciendo a un grupo RGE el explotador determine que no están afectados por los efectos de envejecimiento característicos del mismo, se comprobará que se aporta una explicación razonable que fundamente el resultado.
f) Definición de PGE

Se habrá de revisar la metodología seguida por el explotador para la definición de PGE encaminados a controlar los fenómenos de degradación previamente identificados. Dicha definición se habrá de materializar en un documento soporte con la información fundamental sobre cada programa.

En este sentido, se comprobará que la metodología contempla la adopción de programas estándar con aplicación directa a la central nuclear, así como la definición de programas específicos en aquellos casos que sea requerido.

Se verificará que cada PGE es sometido a la evaluación técnica de sus atributos característicos.

Deberá comprobarse que el esquema de los PGE contiene, como mínimo:

i) Un apartado dónde se señalan, de forma exhaustiva, las ESC dentro de su alcance, con indicación de los materiales, ambientes y mecanismos de degradación asociados.

ii) Un apartado descriptivo de los programas específicos de inspección y control en los que se fundamenta el PGE.

iii) Relación de PM pendientes de resolución.

g) Identificación de PM

Se verificará que el explotador contempla la identificación sistemática de PM asociadas a los PGE, y que éstas son correctamente definidas y registradas.

Las PM pueden surgir durante el proceso de conciliación de los PGE de planta con ciertos programas estándar tomados como referencia en la industria.

El propio proceso de revisión de gestión del envejecimiento generará también lo que se conoce como “propuestas de mejora de alcance”, al aparecer nuevos componentes o estructuras a los que resulta necesario aplicar un determinado PGE, cuyo alcance habrá de ser ampliado.

5.3.4.2. Evaluación de Resultados Ligados a la Revisión de la Gestión del Envejecimiento

Una vez evaluados los aspectos generales de tipo metodológico, se habrán de evaluar los resultados obtenidos por el explotador como consecuencia de la aplicación de dicha metodología.

En general, y en lo que respecta a la selección de la muestra de evaluación, se dará continuidad a los sistemas o agrupaciones tipo “commodity” ya empleados en la fase de alcance y selección. Para la comprobación de ciertos aspectos particulares, podrán seleccionarse otras ESC, más apropiados al objetivo buscado.

Los principales puntos que habrán de ser evaluados son:
a) Comprobaciones relativas a la determinación de materiales.

Con objeto de asegurar que el conjunto de materiales considerados en los análisis están en concordancia con los realmente existentes en la central nuclear, se seleccionarán varios componentes o estructuras para verificar que la identificación de materiales ha sido realizada correctamente, a nivel de sub-componente (esto es, con el nivel de desarme conveniente).

La información básica necesaria para llevar a cabo esta comprobación, normalmente estará contenida en la documentación propia del fabricante (catálogos), o en las bases de datos de componentes disponibles en planta. Por tanto, este aspecto es susceptible de formar parte de una agenda de inspección sobre gestión del envejecimiento.

b) Comprobaciones relativas a la determinación de ambientes

Con objeto de asegurar igualmente que el conjunto de ambientes internos y externos considerados en los análisis son representativos de los realmente existentes, se seleccionarán varios componentes o estructuras en los que se haya identificado más de un estado operativo como significativo para el análisis, verificando que en cada caso, tanto los ambientes internos como externos son los correctos y no se evidencia ninguna omisión.

c) Asignación de efectos de envejecimiento y mecanismos de degradación

Se trata de comprobar, en la práctica, la correcta asignación de efectos de envejecimiento y mecanismos de degradación a los componentes y estructuras dentro del alcance. Para ello, la evaluación se centrará en los siguientes aspectos:

i) Cuando el explotador haya definido grupos genéricos "material-ambiente" (grupos RGE), se seleccionarán varios de los aplicables al sistema o "commodity" objeto de evaluación, verificando la corrección y totalidad de los efectos de envejecimiento y mecanismos de degradación asignados al grupo RGE.

De manera complementaria se seleccionará alguna combinación "material-ambiente" no considerada y que a priori, no sea descartable por ser típica de instalaciones similares. Se habrá de comprobar que efectivamente no existe ningún componente o estructura que responda a la misma.

ii) Se seleccionarán varios componentes y estructuras del sistema o "commodity" objeto de evaluación, para comprobar, de manera individual, que los fenómenos de degradación y mecanismos de envejecimiento identificados como aplicables son correctos y no se evidencia ninguna falta.

Cuando los mecanismos de degradación hayan sido identificados por casación de los elementos con un grupo RGE, se comprobará que efectivamente, los componentes o estructuras objeto de evaluación pertenecen a dicho grupo. En caso de no haberse seguido esta metodología, los fenómenos y mecanismos identificados por el explotador serán valorados haciendo uso de las referencias técnicas confiables y reconocidas.
Será igualmente importante la comprobación, mediante la selección de algún componente adecuado a tal efecto, de que el explotador ha detectado los mecanismos de envejecimiento particulares que afectan al mismo, además de los generales del grupo RGE al que pertenece (por ejemplo, el caso de un tramo de tubería al que aplica el fenómeno de erosión-corrosión por las condiciones particulares de su trazado, y que ha sido evidenciado como consecuencia de la experiencia operativa interna).

Se prestará especial atención a la comprobación de que los mecanismos de degradación y efectos de envejecimiento aplicables, se han definido teniendo en cuenta las funciones propias del componente o estructura.

Se asegurará asimismo que el explotador aporta una justificación técnica para todos aquellos fenómenos de envejecimiento que finalmente no han sido calificados como significativos entre la lista de los a priori aplicables por el grupo RGE al que pertenecen.

d) PGE

En este punto se establecen las verificaciones que habrán de ser realizadas para asegurar que el conjunto de prácticas y actividades de mantenimiento finalmente definidas, son apropriadas y suficientes para el control efectivo de los mecanismos de degradación con los que están asociados.

Tal y como se señaló en apartados anteriores, el conjunto de actividades de mantenimiento, inspección y control se agruparán en programas específicos denominados PGE. Esta denominación aparecerá en aquellos casos en que el explotador haya desarrollado una metodología basada en la normativa de la USNRC.

Para la evaluación de estos aspectos se tomarán como referencia los sistemas o agrupaciones tipo "commodity" seleccionados en etapas anteriores. Nuevamente, para ciertas cuestiones concretas podría emplearse algún sistema o "commodity" distinto de los ya empleados.

De acuerdo con lo anterior, se escogerán varios PGE aplicables a ciertas combinaciones particulares definidas por tipo de componente, material, ambiente, mecanismo de degradación, de los sistemas o agrupaciones tipo "commodity" seleccionados. Los siguientes aspectos y consideraciones habrán de ser contemplados durante la evaluación:

i) Se utilizará como herramienta básica de verificación el informe NUREG-1801, Rev. 1 Generic Ageing Lessons Learned (GALL) [21] de la USNRC. Este informe proporciona, por sistemas, una propuesta de PGE válidos para combinaciones concretas (tipo de componente/material/ambiente/mecanismo de degradación).

ii) Haciendo uso de esta referencia, se verificará que los PGE, propuestos por el explotador, para las combinaciones escogidas, son consistentes con los propuestos por el informe GALL.

Los PGE del GALL con los cuales comparar, podrán ser fácilmente definidos mediante la identificación de la línea del GALL aplicable a la combinación concreta
(tipo de componente, material, ambiente, mecanismo de degradación), del elemento objeto de verificación.

Una vez identificado el PGE de contraste se procederá a cotejar cada atributo característico del programa del explotador, con los atributos equivalentes del programa estándar. Se comprobará así el grado de coincidencia entre ambos programas.

iii) Se prestará especial atención a aquellos casos en los que el informe GALL establezca que el PGE estándar aplicable ha de ser aumentado como requisito imprescindible para asegurar su validez. Así, se deberá comprobar que el PGE definido por el explotador ha sido efectivamente mejorado respecto al estándar del GALL (con este fin, el propio informe GALL da indicaciones sobre cómo mejorar los programas).

iv) En aquellos casos en los que el explotador haya tipificado alguno de sus PGE como consistentes con el GALL, pero con excepciones, se habrá de verificar:

1. Que las excepciones están adecuadamente fundamentadas.

2. Que la alternativa propuesta por el explotador a los puntos del GALL con los que no concilia, cumple (en aquello que le aplique), con los criterios señalados en el punto siguiente para la evaluación de PGE específicos de la central nuclear.

v) En aquellos casos en los que el informe GALL no incluya información relativa a la combinación particular a evaluar (tipo de componente, material, ambiente y mecanismo de degradación), o en aquellos casos en los que el propio informe GALL indique la necesidad de desarrollar, por parte del explotador, un PGE específico para la central nuclear, se utilizará como guía para la evaluación la metodología propuesta en la Branch Technical Position RLSB-1, incluida en el Apéndice A del informe NUREG-1800, Rev. 1 (SRP) [20] de la USNRC.

En esta referencia se plantea la evaluación de 10 atributos, a la hora de validar cualquier PGE. Estos atributos son genéricos y según el tipo de PGE (preventivo, mitigación, monitorización de condiciones o monitorización del funcionamiento), alguno de ellos podría quedar sin contenido.

Para la valoración de los atributos por parte del evaluador, y en ausencia del soporte aportado por el informe GALL, se recurrirá fundamentalmente a la comprobación de la experiencia propia de la central nuclear, que habrá de justificar la adecuación y efectividad del contenido de dicho PGE.

Se podrá utilizar como referencia la experiencia de otras centrales de tecnología similar y que dispongan de PGE que ya han sido sometidos a la evaluación de los OR correspondientes.

Como bases para la evaluación, a partir de las recomendaciones de las referencias [20] y [22] de la USNRC y del Nuclear Energy Institute (NEI), se describen los 10 atributos que permiten caracterizar cualquier PGE.
(1) **Alcance del programa.**

El PGE habrá de contemplan, dentro de su alcance, la definición general del tipo de componentes, materiales, ambientes y fenómenos de degradación a los que aplica. Esta información habrá de ser coherente con el resultado del análisis de la gestión del envejecimiento.

Adicionalmente, el PGE deberá incluir un listado con la referencia concreta de componentes y estructuras dentro de su alcance.

(2) **Acciones preventivas.**

En aquellos casos en los que el PGE base toda o parte de su estrategia en la implantación de medidas preventivas (como por ejemplo, un programa de pinturas protectoras), éste deberá describir las acciones previstas para evitar o minimizar la ocurrencia de los fenómenos de degradación que gestiona. Estas acciones podrán consistir en actividades de mantenimiento, inspección, optimización de la operación, e incluso MD para controlar la degradación del componente o estructura.

(3) **Parámetros monitoreados o inspeccionados.**

El PGE deberá describir los parámetros a vigilar, junto con las actividades de prueba e inspección adecuadas para el seguimiento y control de los fenómenos de degradación.

(4) **Detección de los efectos del envejecimiento.**

El PGE deberá contemplar las técnicas y métodos necesarios para la detección de los fenómenos de envejecimiento antes de que el componente o estructura sea incapaz de desarrollar su función propia. Con este objetivo, el tipo y/o métodos de prueba, inspección, ensayo, etc., su frecuencia, el tamaño de muestra, los puntos de medida, instrumentos de medida, etc., deberán ser adecuados al anterior propósito.

En aquellos casos en los que la estrategia de control esté basada en un muestreo, deberá verificarse que los criterios establecidos a este respecto son razonables para asegurar la representatividad de la población total.

(5) **Seguimiento y análisis de tendencias.**

El PGE ha de contemplar la realización de actividades de seguimiento y de análisis de tendencias, que permitan conocer el ritmo de avance de los fenómenos de envejecimiento, y por tanto posibilitar la adopción de medidas adicionales de control, medidas correctivas o de mitigación.

En este sentido el PGE deberá incluir una descripción de los parámetros o indicadores de seguimiento, la metodología de proyección a futuro, y los criterios de aceptación aplicables para la toma de decisiones.
5.3.5. **Resultados de la Aplicación de los Programas de Gestión del Envejecimiento (PGE)**

Este apartado se refiere a la comprobación de que los PGE definidos por el explotador son realmente los aplicados en la central nuclear, y que éstos son efectivos para el control de los mecanismos de degradación a los que se refieren.
Por el carácter eminentemente práctico de la documentación a manejar, estas verificaciones se apoyarán en gran medida en la información recabada en inspecciones realizadas a la central nuclear.

Para la evaluación, se seleccionarán varios PGE procediéndose a verificar los resultados obtenidos durante el período que se estime conveniente, en relación con una o varias ESC dentro del alcance del mismo.

Se prestará especial atención a aquellos PGE que sean específicos de planta o planteen excepciones al GALL, o bien aquellos que son de nueva implantación en la central nuclear, con objeto de comprobar su adecuación y efectividad en el control de los mecanismos de degradación a los que se dirigen.

Asimismo, y por su especificidad, se considerarán para su evaluación aquellos PGE definidos como resultado de un AEFT o de la resolución de un Generic Safety Issue (GSI).

En base a lo anterior, y para los PGE seleccionados, se deberán comprobar los siguientes aspectos:

a) Los parámetros y variables vigilados habrán de ser coherentes con los especificados en el PGE. Igualmente, las inspecciones, ensayos, pruebas, etc., ejecutadas, deberán de haber sido realizadas siguiendo las técnicas, criterios de frecuencia, técnicas de muestreo, etc., especificadas en el PGE, y siempre de acuerdo con pautas procedimentadas.

 Se comprobará también que el personal responsable de la realización de las pruebas, inspecciones y controles tiene la formación y experiencia necesaria.

b) Se verificará que los análisis de tendencias correspondientes han sido realizados en aquellos casos en los que así sea requerido por el PGE.

c) Se comprobará que en todos los análisis de resultados fruto de la aplicación de los PGE, aparecen claramente definidos los criterios de aceptación, y se ha hecho una comparación de los resultados obtenidos con los criterios aplicables.

d) En aquellos casos en los que los criterios de aceptación no se hayan cumplido, se comprobará:

 i) Que se ha procedido a ampliar la muestra siempre que así se requiera en el PGE.

 ii) Que se han realizado los análisis posteriores necesarios (análisis de causa raíz, previsión de pérdida de funcionalidad, etc.).

 iii) Que en aquellas situaciones en las que se precise, se han definido las medidas correctoras, sustituciones o MD necesarias, así como su estrategia de implantación.

e) Se verificará igualmente que las diferentes actividades del PGE han sido realizadas siguiendo los requisitos de garantía de calidad establecidos en el mismo.

f) Se deberá comprobar que el explotador, en los casos en los que así se requiera, y como consecuencia de la experiencia adquirida por la aplicación práctica de los PGE, ha defin-
do las PM necesarias para aumentar su adecuación y efectividad. En este sentido, será de gran ayuda la definición de indicadores de efectividad ligados a los resultados obtenidos en la aplicación de cada PGE.

5.3.6. Seguimiento de Propuestas de Mejora (PM)

Las PM irán surgiendo como consecuencia de las actividades siguientes:

a) Proceso inicial de definición de PGE, al evaluar los 10 atributos característicos.

b) Análisis de la gestión del envejecimiento (iniciales, o revisiones de los iniciales), al requerirse la ampliación del alcance del PGE para incluir nuevas ESC.

c) Como resultado de la experiencia adquirida en la aplicación práctica de los PGE.

d) Como consecuencia del análisis de la experiencia operativa externa, o bien de programas de investigación, avances técnicos, etc., que pudieran ser de aplicación al caso concreto de la central nuclear.

La evaluación tratará de comprobar que el explotador ha definido un orden claro de seguimiento de las PM, y que los resultados obtenidos, fruto de su aplicación, son satisfactorios. Para ello, se tomará como base:

A) Los resultados obtenidos en inspecciones realizadas sobre aspectos de gestión del envejecimiento, donde como punto de inspección, se haya incluido la realización de comprobaciones ligadas a la gestión de PM.

B) La información aportada en los informes periódicos remitidos por la central nuclear al OR.

La información recopilada servirá de referencia para evaluar la efectividad general del proceso de resolución de PM, comprobándose, entre otros aspectos, el número de PM resueltas en el período, tiempo previsto de resolución frente a tiempo real requerido, definición de indicadores de efectividad, resultados de los indicadores, etc.

5.3.7. Seguimiento de Modificaciones de Diseño (MD) y Sustituciones de Equipos Relacionados con la Gestión del Envejecimiento

Es necesario comprobar, como parte de la evaluación, que el explotador hace un tratamiento adecuado de las MD y sustituciones de equipos realizadas en la central nuclear.

En el caso particular de proyectos de aumento de potencia, será de aplicación lo establecido a continuación, en tanto que los mismos pudieran implicar MD, cambios en las condiciones operacionales, sustituciones de equipos, etc., que afecten a la gestión del envejecimiento. Igualmente, cualquier modificación en los procedimientos de operación que se realice en la central nuclear, deberá ser analizada para determinar sus implicaciones en los análisis de gestión del envejecimiento existentes.

Con este fin, se seleccionará algún proyecto de MD o sustitución de equipo, verificando:
a) Que el explotador ha considerado de forma explícita en los criterios generales de diseño, para el caso de MD, o en la especificación de los nuevos equipos, para el caso de sustituciones, los aspectos relacionados con la gestión del envejecimiento. Esto tendrá implicancias en la selección de materiales, sistemas de protección, márgenes de diseño, sistemas de muestreo, monitoreo, inspección, pruebas, etc., por citar algunos ejemplos.

b) Que el explotador ha analizado el efecto que la MD o sustitución pudiera ocasionar, de forma indirecta, en las condiciones operativas de componentes o estructuras ya existentes en la central nuclear, en tanto que su variación pudiera implicar cambios en los ambientes y posibles mecanismos de envejecimiento de aplicación.

c) Que los nuevos componentes o estructuras introducidos en la central nuclear, han sido analizados siguiendo la metodología general de los análisis de gestión del envejecimiento. Los resultados de estos análisis serán evaluados siguiendo los criterios establecidos anteriormente. El explotador podrá plantear una estrategia de modificaciones y sustituciones basada en la experiencia acumulada, el estado de las ESC, así como sus condiciones de obsolescencia. Este plan habrá de ser evaluado de forma específica, analizando las razones que lo justifican, junto con la adecuación de las medidas propuestas.

5.3.8. Seguimiento de Revisiones de Documentos Soporte

Estas comprobaciones están encaminadas al seguimiento de los análisis previamente desarrollados en etapas anteriores, y que a lo largo del tiempo irán siendo actualizados por razones diversas: incorporación de resultados obtenidos en los análisis de experiencia operativa, programas de investigación, nuevos GSI, etc.

En primer lugar se verificará si el explotador cuenta con un procedimiento sistemático de revisión de las distintas fuentes de información que pudieran resultar de interés en la mejora y actualización de análisis y programas (experiencia operativa, resultados de programas de investigación, etc.).

Tomando como base el listado actualizado de la documentación soporte desarrollada en las distintas etapas del proceso (alcance y selección, identificación de efectos de envejecimiento, mecanismos de degradación, definición de PGE, etc.), se seleccionará alguno de los documentos revisados con objeto de verificar:

a) las causas que motivaron su revisión,

b) la adecuación y consistencia de las modificaciones introducidas, acordes al objetivo de la documentación soporte.

Asimismo, cuando sea aplicable, los aspectos modificados serán evaluados de acuerdo con la metodología expuesta anteriormente, teniendo en cuenta los criterios de alcance, selección, análisis de la gestión del envejecimiento, etc.

Finalmente, en aquellos casos en los que el evaluador disponga de información sobre experiencia operativa (interna o externa), o sobre resultados de programas de investigación que razonablemente pudieran ser de aplicación a la central nuclear, se comprobará si el explotador ha evaluado su impacto en la misma, en caso afirmativo, si esto ha generado una nueva revisión de los análi-
sis implicados. Esta cuestión podrá ser tratada con el explotador como punto de una agenda de inspección.

5.3.9. Evaluación del Proceso de Identificación y Resolución de **Generic Safety Issues** (GSI) aplicables a las centrales nucleares

Este punto hace referencia a la comprobación de que el explotador procede periódicamente a la identificación de aquellos GSI relacionados con fenómenos de envejecimiento, y que aplican a ESC dentro del alcance.

Con el fin de la evaluación, se verificarán los aspectos siguientes:

a) Si el explotador tiene definida una forma sistemática para la identificación de GSI con implicaciones en la gestión del envejecimiento.

b) Se seleccionarán, en base al listado de los GSI identificados, uno o varios no incluidos en la lista y que a juicio del evaluador, podrían ser candidatos a estar en la misma. Se comprobará que el explotador dispone de una justificación razonada relativa a su no inclusión.

c) Se comprobará adicionalmente, de cara a un proceso de renovación de licencia, que el explotador ha procedido a la reevaluación de los GSI previamente identificados, y que ha detectado aquellos que por su dependencia con el tiempo constituyen un AEFT; estos últimos habrán de ser tratados como se indica en el apartado 5.4.1 de esta guía.

d) Se verificará igualmente que el explotador dispone de PGE para el control de los mecanismos de degradación asociados a aquellos GSI con implicaciones en esta área.

5.3.10. Gestión de la Obsolescencia

La obsolescencia de las ESC importantes para la seguridad se gestionará de manera proactiva, con previsión y anticipación, a lo largo de la vida útil de la central nuclear.

El explotador deberá establecer un programa para la gestión de la obsolescencia. Esto incluye la disposición de la estrategia, objetivo y acuerdos organizacionales, la designación de recursos (humanos y financieros), y el monitoreo del programa para asegurar el cumplimiento de sus objetivos [1].

En este sentido, se pueden distinguir dos tipos de obsolescencia:

a) Normativa: caracterizada por que los componentes no cumplen con las normas, criterios, etc., vigentes en el momento actual (por ejemplo, criterios de calificación de equipos, separación, diversidad, funcionamiento en condiciones de accidente severo, etc.). En el caso de componentes de control, esto puede afectar tanto al software como al hardware.

b) Tecnológica: caracterizada por la dificultad para encontrar componentes de repuesto o asistencia técnica especializada.

Si la obsolescencia no es gestionada adecuadamente, puede traer consigo la pérdida de funcionalidad de componentes importantes para la seguridad. Por lo tanto, el explotador deberá imple-
mentar un plan de gestión basado en la anticipación a lo largo de la vida útil de la central nuclear.

El programa de gestión de obsolescencia deberá enfocarse más en la gestión de la obsolescencia tecnológica. Además, el programa deberá proveer una guía de la gestión de la obsolescencia de las normas y regulaciones mediante una RPS [2] y el DT4.

Las actividades de gestión de obsolescencia del explotador deberán ser supervisadas por el OR a lo largo de la vida útil de la planta.

En base a lo anterior, y con objeto de la evaluación, se deberá comprobar:

a) Que el explotador ha definido y puesto en práctica un programa de gestión de la obsolescencia dónde se establezca de forma clara el alcance, objetivos, responsabilidades, plazos, acciones, recursos, así como el seguimiento del mismo para medir su efectividad.

b) Que los programas de gestión de la obsolescencia contemplan:
 i) Una evaluación sistemática y periódica de la obsolescencia.
 ii) La estrategia a seguir, una vez que el problema de obsolescencia ha sido detectado para un componente tipo.

c) Que los programas son efectivos en tanto que posibilitan la definición de las acciones y recursos necesarios, para asegurar la funcionalidad de los componentes a lo largo de la vida útil de la central nuclear (compra de repuestos, realización de sustituciones, disponibilidad de personal técnico especializado, etc.).

6. GESTIÓN DE ENVEJECIMIENTO APLICABLE A LA OPERACIÓN A LARGO PLAZO

6.1. Introducción

En este capítulo se presentan los aspectos de interés para la evaluación, tanto en lo que respecta a la operación a largo plazo en sí, como al proceso de licenciamiento de la operación a largo plazo (o proceso de renovación de licencia para la operación a largo plazo).

Para ello, en primer lugar se realiza una breve introducción a los dos documentos de licencia básicos en estos procesos (PIEGE y PGV-LP). A continuación se proporcionan directrices aplicables a la evaluación de los distintos aspectos importantes en estos procesos. Finalmente, en el apartado 5.6 se hace lo mismo, pero en el ámbito de las centrales nucleares de diseño CANDU; la especificidad del proceso de licenciamiento aplicado en estas centrales nucleares requiere dedicarles un apartado específico.

No obstante lo anterior, se entiende que las directrices y criterios directamente aplicables a la evaluación, tanto en el ámbito de centrales nucleares que utilicen metodologías basadas en la metodología estadounidense (apartados 5.4 y 5.5), como en centrales nucleares que se basen en metodologías CANDU (apartado 5.6), pueden ser de utilidad general, en la medida en que pueden servir de orientación a los reguladores en sus tareas de evaluación de proyectos de licencia-
miento y programas de operación a largo plazo. Por ejemplo, las directrices que se aportan en 5.6 sobre paradas de reacondicionamiento y rearranque posterior, son aplicables, en general, a cualquier tipo de planta.

Por último, es importante señalar que, en su mayor parte, las directrices que se aportan en el capítulo 4, aplicables a la gestión del envejecimiento durante la vida de diseño, son aplicables también para la operación a largo plazo.

6.2. Plan de Gestión de Vida a Largo Plazo (PGV – LP)

Este documento incluirá la estrategia básica de gestión del envejecimiento del explotador, durante el período de operación a largo plazo de una central nuclear. Su perdurabilidad será también variable, en función de la duración del alargamiento de la vida, que será la definida por el explotador, aunque con una cierta vocación de permanencia.

Al igual que el PGV, el PGV–LP se completa con un informe periódico, en el que el explotador expone las principales actividades relativas a gestión del envejecimiento, realizadas durante el periodo anterior, siguiendo los criterios y metodología planteada en el PGV–LP.

Entre los puntos básicos tratado por este documento están:

a) Aspectos organizativos y de gestión relacionados con el PGV implantedo en la central nuclear.

b) Aspectos de carácter general relacionados con la implantación de los PGE (actividades de seguimiento de ESC, gestión de PM, etc.).

c) Aspectos relacionados con la revisión de los distintos análisis de gestión del envejecimiento con motivo de MD acometidas en la central nuclear, implantación de PM, resultados de la experiencia operativa propia o ajena, programas de investigación, etc.

d) Avance de las actividades a realizar por el explotador, de acuerdo con lo establecido en la nueva licencia de operación, concedida para el período de operación a largo plazo.

El PGV - LP se apoyará fundamentalmente en el PIEGE, que se cita a continuación, así como en los documentos específicos de análisis desarrollados durante el proceso de renovación de licencia. Estos análisis versarán fundamentalmente sobre los temas ya señalados, en relación con el PGV.

6.3. Plan Integrado de Evaluación y Gestión de Envejecimiento (PIEGE)

Por definición, el PIEGE es el conjunto de análisis de gestión del envejecimiento que cubren las tres etapas clásicas de alcance y selección de ESC, identificación de efectos de envejecimiento y mecanismos de degradación, y definición de PGE. Incluye también AEFT necesarios para la revisión de los análisis realizados con hipótesis de vida de diseño definida.

Este Plan puede tener como referencia la reglamentación estadounidense contenida en la regla 10CFR54 “Requisitos para la renovación de la licencia de operación” [19] y los documentos que la desarrollan, tanto por parte de la USNRC, como por la industria nuclear.
El PIEGE constituye el documento básico de evaluación del envejecimiento de las ESC que ha de presentar el explotador interesado en obtener una nueva licencia de operación, más allá de la vida de diseño de la central nuclear.

6.4. Aspectos Objeto de Evaluación

La Tabla C muestra los aspectos objeto de evaluación durante la vida de diseño, el proceso de renovación de licencia y durante el período de operación a largo plazo. Muchos de estos aspectos se habrán aplicado durante la vida de diseño y ya fueron mencionados y discutidos en detalle en el capítulo 4 anterior.

Por tal motivo, en dicha tabla se señala en cuáles etapas es necesario considerar cada aspecto.

6.4.1. Revisión de los Análisis de Envejecimiento en Función del Tiempo (AEFT)

El objetivo fundamental cuando se evalúa este aspecto es la comprobación efectiva de que el explotador:

a) Ha seguido una metodología que asegure razonablemente la identificación de todos los AEFT, de acuerdo con las condiciones de licencia vigentes

b) Ha procedido al análisis, revisión y resolución de los AEFT identificados, siguiendo los criterios establecidos por el DT1.

Tabla 3. Aspectos objeto de evaluación.

<table>
<thead>
<tr>
<th>Aspectos objeto de evaluación</th>
<th>Vida de Diseño</th>
<th>Renovación de Licencia</th>
<th>Operación a Largo Plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspectos organizativos y de gestión.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alcance y selección de ESC.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Análisis de revisión de la gestión del envejecimiento.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Resultados de la aplicación de los programas de gestión de envejecimiento (PGE).</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de propuestas de mejora (PM).</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de modificaciones de diseño (MD) y substituciones de equipos relacionados con la gestión del envejecimiento.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seguimiento de revisiones de documentos soporte.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Proceso de identificación y resolución de Generic Safety Issue (GSI) aplicables a la central nuclear.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gestión de la obsolescencia.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Revisión de los Análisis de Envejecimiento en Función del Tiempo (AEFT).</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ = tema aplicable (*) sólo definición
6.4.1.1. Resultados del Proceso de Identificación de AEFT

Los AEFT son, por definición, totalmente dependientes de las hipótesis y metodología de análisis empleadas en los documentos constituyentes de las condiciones de licencia vigentes.

Para la realización de la evaluación, se seleccionarán también uno o más análisis que el explotador no haya identificado como AEFT, y que potencialmente pudieran serlo a criterio del evaluador.

En el proceso de selección de potenciales AEFT, se podrán utilizar las siguientes referencias documentales:

a) Documentos integrantes de las condiciones de licencia o documentación obligatoria:
 i) IS
 ii) LO e instrucciones complementarias a la misma.
 iii) Correspondencia de licencia entre explotador y OR.
 iv) Documentos de bases de diseño.
 v) Especificaciones Técnicas.
 vi) Otros referenciados en las condiciones de licencia tales como los análisis de riesgo al fuego, estudios de calificación ambiental, etc.

b) AEFT genéricos incluidos en el Standard Review Plan (SRP) (Capítulo 4 [20]), en el informe GALL (Capítulo X [21]), y en la Guía NEI 95-10 (Capítulo 5 [22]).

c) Solicitudes de renovación de licencia y evaluaciones de la USNRC o de otros OR de referencia, correspondientes a centrales de tecnología similar.

Para los análisis no identificados como AEFT, se comprobará que el explotador dispone de una justificación razonable para la no inclusión de los mismos dentro de la lista de AEFT de la central nuclear.

6.4.1.2. Proceso de Resolución de AEFT

Existen tres métodos válidos para la evaluación y resolución de AEFT. A continuación se menciona cada uno de los métodos:

a) El explotador podrá justificar, mediante el correspondiente análisis, que el AEFT permanece válido para el periodo de operación a largo plazo.

b) Prolongar el AEFT hasta el final del periodo de operación a largo plazo (considerar el período adicional partiendo del análisis inicial).

c) Resolver el AEFT por medio de la gestión de los efectos del envejecimiento durante todo el período de operación a largo plazo (definición de un PGE de aplicación, o de acciones correctivas o compensatorias).
Con objeto de la evaluación, y tomando como base el listado final de AEFT identificados, se seleccionarán algunos de ellos, prestando especial atención a aquéllos que son específicos de planta, esto es, no identificados de forma genérica en el informe GALL, SRP, etc.

Se comprobará en cada caso que éstos han sido resueltos siguiendo alguno de los métodos válidos, y que el procedimiento seguido, programas de cálculo utilizados y las conclusiones obtenidas, son correctas y acordes con la normativa de aplicación.

Se hará especial énfasis en la consideración, por parte del explotador, de las condiciones operativas reales a las que han estado sometidos los componentes objeto del AEFT, que condicionan el grado de envejecimiento sufrido por los mismos.

Si existe algún AEFT resuelto mediante la opción de "gestión de los efectos del envejecimiento", se comprobará que en estos casos existe un PGE asociado cuyo alcance y contenido es coherente con lo establecido en el correspondiente AEFT (estructuras y componentes afectados, estrategia de gestión, etc.).

Si el explotador ha optado por la definición de acciones correctivas o compensatorias, se verificará que existe un programa de implantación, y que los plazos asociados al mismo son aceptables. Si dicho plazo supone su implantación antes del comienzo del período de operación a largo plazo, este aspecto deberá ser comprobado de forma específica en alguna de las inspecciones previstas.

Se verificará por último que en los análisis de gestión del envejecimiento, se refleja adecuadamente la aplicación de un determinado AEFT a las estructuras y componentes correspondientes, e igualmente en el caso de que el AEFT haya sido resuelto mediante la aplicación de un PGE.

6.4.1.3. Proceso de Identificación y Resolución de Exenciones Basadas en AEFT

Este apartado se refiere a ciertas exenciones obtenidas por el explotador a requisitos de licencia, que al ser dependientes de la variable "tiempo", pudieran constituir un AEFT.

Los requisitos a cumplir por estas exenciones son los señalados a continuación:

a) La exención seguirá aplicando durante el periodo de operación a largo plazo.

b) La exención afecta a las ESC incluidas en el alcance de la revisión de la gestión del envejecimiento.

c) La exención se basa en un AEFT.

Para la evaluación, y en base a un listado con las exenciones vigentes, se seleccionarán además una o varias que, a juicio del evaluador, pudieran constituir un AEFT, pero no identificadas como tales por el explotador. Se comprobará en estos casos que el análisis dispone de una justificación al respecto.

Se seleccionará alguna de las exenciones que sí constituyen AEFT, con objeto de verificar que el explotador ha resuelto adecuadamente la misma, para el período de operación a largo plazo.
6.4.1.4. Referencia a los AEFT en el Informe de Seguridad (IS)

Se habrá de comprobar que los distintos AEFT definidos durante el proceso de renovación de licencia, adecuadamente recogidos en el PIEGE, son referenciados en el IS. El explotador incorporará dicha información al IS, donde constará un resumen de los análisis correspondientes a cada uno de los AEFT identificados.

6.5. Aspectos de Evaluación Específicos Relacionados con el Proceso de Renovación de Licencia

En el proceso de renovación de licencia, se deberá comprobar que el explotador ha llevado a efecto las siguientes actuaciones antes del final de la vigencia de la actual LO:

a) Resolución satisfactoria de todas las PM asociadas a los PGE definidos para el período de operación a largo plazo.

b) Implantación efectiva de todos los PGE definidos para el período de operación a largo plazo, a partir de la entrada en vigor de la nueva LO.

c) Realización de todas las inspecciones de tipo único definidas en el análisis de la gestión del envejecimiento. Las inspecciones únicas deberán disponer del correspondiente análisis de resultados y de la redefinición, en caso que así se requiera, de los PGE aplicables a los componentes o estructuras implicadas.

d) Comprobación de que los distintos PGE definidos durante el proceso de renovación de la LO (adecuadamente recogidos en el PIEGE), sean referenciados en el IS. Para tal fin, el explotador incorporará dicha información al IS, donde constará un resumen del contenido correspondiente a cada uno de ellos.

Estas verificaciones se fundamentarán principalmente en la información recabada como parte de una inspección específica a realizar en la central nuclear.

6.6. Evaluación de la Operación a Largo Plazo de Centrales Nucleares de Tipo CANDU

6.6.1. Iniciación del Proyecto de Extensión de Vida (PEV)

Para iniciar un PEV, el explotador deberá notificar formalmente al OR su intención, y remitir una descripción del proyecto de Operación a Largo Plazo (extensión de vida) con esta notificación; la cual deberá contemplar, como mínimo, los siguientes aspectos:

a) Definición del objetivo y alcance del proyecto

b) Estado del diseño y operación actuales de la planta

c) Componentes y estructuras (estructuras temporales y permanentes, infraestructura, equipamiento de construcción, etc.)

d) Actividades previstas del proyecto (fases operacionales, tiempo y cronograma de cada fase, etc.)

e) Información del emplazamiento (ubicación, características ambientales y uso del terreno)
f) Gestión de residuos

g) Hitos previstos.

El OR deberá evaluar la descripción del proyecto preliminar que le presenta el explotador, cuyo propósito es determinar si existen observaciones a dicho proyecto que deban ser tenidas en cuenta por el explotador.

6.6.2. Evaluación del Documento Base de Licenciamiento

El OR debe evaluar y aprobar un Documento Base de Licenciamiento que defina las pautas a seguir para los distintos temas de licenciamiento. Un contenido estándar puede ser el siguiente:

a) Introducción/ Alcance / Objetivo.

b) Gestión del proyecto / Garantía de calidad.

c) Impacto radiológico ambiental.

d) Revisión Periódica de Seguridad (RPS).

e) Cumplimiento de normas y documentos regulatorios.

f) Evaluación de estado de la planta.

g) Mejoras al diseño.

h) Informe de Seguridad (IS).

i) Análisis determinístico, probabilístico y de riesgo.

j) Gestión de residuos.

k) Actividades durante la parada de re-acondicionamiento.

l) Acuerdos con el OR.

6.6.3. Evaluación de la Revisión Periódica de Seguridad (RPS)

La RPS de una central nuclear en operación permite tener un panorama del nivel de seguridad de la misma, y en consecuencia determinar si es necesario realizar modificaciones prácticas y razonables para lograr y mantener un alto nivel de seguridad, lo más cercano posible al de las plantas más modernas.

Cuando se tiene la intención de extender la vida de una central nuclear, se suele realizar una revisión integrada de seguridad con requisitos y filosofía similar a la RPS, pero enfocada a diagnosticar la seguridad de la central nuclear con miras a la operación a largo plazo.

Las evaluaciones relacionadas con la gestión del envejecimiento dentro de la RPS se describen en el DT4.
6.6.4. Evaluación de Estudios de Envejecimiento

A continuación se describen brevemente las evaluaciones relacionadas con la evaluación de estado de estructuras, sistemas y componentes para la Operación a Largo Plazo.

a) Se revisarán los procedimientos de trabajo para verificar que las metodologías de evaluación sean las recomendadas por las prácticas internacionales.

b) Se revisarán los informes de los sistemas de seguridad o relacionados con la seguridad (RS), verificando que la metodología de evaluación es aplicada adecuadamente.

c) Se verificará que el informe de estado refleje la situación real de las ESC de interés regulatorio y que esté completo.

d) Se evaluarán las conclusiones y recomendaciones surgidas de las evaluaciones de envejecimiento de las ESC de interés regulatorio. Se determinarán las recomendaciones críticas para la seguridad y se identificarán las desviaciones.

e) Se realizará el control de la implementación de las recomendaciones o modificaciones surgidas de las evaluaciones de envejecimiento de las ESC de interés regulatorio (priorización, disposición e implementación).

6.6.5. Evaluación de los Análisis de Seguridad

Los análisis de seguridad que deben realizarse en el marco de la Operación a Largo Plazo de una central nuclear se encuentran dentro de la RPS y las evaluaciones relacionadas con los mismos se describen en el DT4.

A modo de resumen, es necesario realizar la evaluación del alcance, los requisitos, las metodologías y los resultados, de:

a) Análisis probabilístico y determinístico.

b) Análisis de riesgo.

c) Revisión del diseño contra las normas, códigos y prácticas modernas.

d) Programa para la gestión de accidentes severos, dentro del factor de seguridad “APS”.

e) Revisión de las mejoras al diseño introducidas en centrales nucleares de diseño similar.

6.6.6. Evaluación del Plan de Mejora de la Seguridad (PMS)

Los resultados de las evaluaciones de seguridad, de envejecimiento y de la RPS deben ser utilizados para elaborar un PMS que deberá ser presentado al OR y aprobado por éste, antes de su implementación.

Las evaluaciones relacionadas con el mismo son:
a) Evaluación de la suficiencia de las acciones correctivas, las modificaciones a la planta, las mejoras de seguridad, medidas compensatorias y mejoras a los programas de operación y gestión surgidas a partir de las debilidades identificadas.

Para determinar la suficiencia de tales medidas será necesario evaluar la justificación elaborada por el explotador para aquellas debilidades a las que no se les dará solución. Tales justificaciones pueden basarse en análisis costo-beneficio, análisis de confiabilidad, juicio de expertos, etc.

b) Evaluación del cronograma de implementación de mejoras.

Dado que las mejoras pueden referirse a MD, cambios en las prácticas o programas de planta, cambios en las políticas de mantenimiento o inspección, etc., el explotador deberá definir un cronograma de implementación, el cual será aprobado por el OR.

La evaluación de dicho cronograma responderá a una asignación de prioridades de las mejoras de acuerdo a su impacto sobre la seguridad.

c) Evaluación de las Mejoras

Dependiendo de la normativa de cada país, existe una categoría de modificaciones a la central nuclear que debe ser aprobada por el OR.

Típicamente, esta evaluación, para el caso de cambios en los procedimientos de operación, prueba o mantenimiento, comprende:

i) Evaluación del análisis de seguridad de dicho cambio

ii) Evaluación de los procedimientos, instrucciones o planes.

iii) Evaluación de los planes de entrenamiento del personal.

En el caso de MD en equipos o componentes, la evaluación suele incluir aspectos tales como:

I) Evaluación del análisis de seguridad

II) Evaluación del diseño conceptual

III) Evaluación de la calificación de proveedores.

Cuando se trate de cambios mayores en los programas y políticas de la central nuclear, las evaluaciones pueden involucrar áreas tales como licenciamiento del personal, organigrama de operación, documentación obligatoria relacionada, etc.

En todos los casos, será necesario evaluar la consideración de los factores humanos en los cambios, y la actualización de la documentación correspondiente.
6.6.7. Evaluación del Impacto Radiológico Ambiental

El explotador deberá evaluar el impacto radiológico que la operación a largo plazo tendrá en el ambiente. El OR evaluará un informe elaborado por el explotador conteniendo el resultado de dicha evaluación. Si bien la misma está incluida en la RPS pueden resumirse las evaluaciones que se llevan a cabo, típicamente:

a) Limitación de efluentes radiactivos
b) Cambios en el uso de las tierras
c) Previsiones para la gestión de los desechos radiactivos originados en el reacondicionamiento de la planta y en la operación a largo plazo.
d) Revisión del sistema de monitoreo radiológico ambiental.

6.6.8. Evaluación de los Trabajos para la Implementación de Mejoras en Sistemas, Equipos y Componentes

En caso de se requieran paradas de reacondicionamiento extendidas para el reemplazo de componentes críticos, deberán realizarse las evaluaciones que se listan a continuación:

a) Evaluación de planes y procedimientos de trabajo.
b) Evaluación de programa de protección radiológica.
c) Evaluación de planes de entrenamiento y cualificación de personal.
d) Evaluación de planes para la puesta en servicio de ESC.
e) Evaluación de planes de emergencia para configuraciones especiales.
f) Evaluación de políticas, planes y procedimientos de operación transitorios para la parada.
g) Evaluación de los planes para el manejo del agua pesada durante la parada.
h) Evaluación para el licenciamiento de instalaciones para la gestión de residuos radiactivos generados en la parada.
i) Evaluaciones relacionadas con el licenciamiento de personal.
j) Evaluaciones relacionadas con la operatoria para el movimiento de grandes componentes.

Cuando las mejoras introducidas en la central nuclear así lo requieran, pueden ser necesarias evaluaciones relacionadas con cambios mayores en la documentación obligatoria, límites de operación y requisitos de la LO.

6.6.9. Evaluaciones Relacionadas con el Proceso de Renovación de Licencia

El otorgamiento de la LO para el período extendido implica las siguientes evaluaciones:
a) Evaluación del informe de implementación del PMS.

b) Evaluación de la documentación obligatoria que haya sido actualizada o modificada.

En caso de parada de reacondicionamiento extendida, son necesarias una serie de evaluaciones relacionadas con el re-arranque.

El re-arranque implica retornar el reactor, los sistemas nucleares y no nucleares a la operación comercial. Implica la demostración por parte del explotador de que todas las condiciones relevantes de licenciamiento han sido cumplidas y que los trabajos asociados se han efectuado a satisfacción del OR.

Las evaluaciones relacionadas con el re-arranque son:

A) Evaluación del plan de puesta en servicio, que contiene:

 i) La descripción y cronograma de las actividades, incluyendo la organización y asignación de responsabilidades.
 ii) Los criterios de aceptación para cada una de las fases de la puesta en servicio.
 iii) Definición de los puntos de detención por parte del OR e informes a ser presentados por el explotador en cada caso.

B) Evaluación de los resultados de las fases de la puesta en servicio

 i) Fase A (Pruebas Preliminares):

 En esta fase se confirma el estado correcto de equipos nuevos o modificados, y se confirma la capacidad para el servicio de ESC nuevos o existentes en la planta a través de un programa de prueba del componente individual y del sistema integrado. Esta fase debe completarse exitosamente antes de la carga del combustible en el reactor.

 ii) Fase B (Carga de Combustible):

 En esta fase se debe asegurar que el combustible se carga en forma segura en el reactor y se confirma que el reactor está en condiciones adecuadas para arrancar y que todos los requisitos para permitir llevar a crítico al reactor se han cumplido. Esta fase debe cumplirse exitosamente previo a salir del estado de parada garantizada.

 iii) Fase C (Puesta a Crítico):

 En esta fase se confirma el comportamiento del reactor en el estado de criticidad inicial y subsiguientes pruebas a baja potencia, e incluye actividades que no pueden ser realizadas en el estado de parada garantizada.

 iv) Fase D (Operación a Potencia):

 En esta fase se demuestra el comportamiento del reactor y sistemas a altas potencias, incluyendo actividades que no pueden ser realizadas a niveles de potencia bajos.
6.6.10. Hitos

El retorno al servicio se alcanza a través de la realización de numerosos hitos. Los hitos que podrían ser reflejados en la etapa de retorno al servicio de un PEV incluyen:

a) Carga del combustible.
b) Remoción del estado de parada garantizada.
c) Operación del sistema de transporte de calor.
d) Operación de la turbina.
e) Sincronización de la turbina a la red.
f) Plena potencia del reactor.
g) Pruebas específicas de puesta en marcha.

6.6.11. Puntos de Control

El proceso de retorno al servicio incluye el avance hacia los puntos de control regulatorio. Estos puntos de control están típicamente alineados con las fases de puesta en marcha y deben incluir los hitos listados anteriormente. Las condiciones de licencia son establecidas para la administración de los puntos de control, que son incorporados por el explotador en el plan de retorno al servicio.

El OR aprueba remover un punto de control dado en dependencia del envío por parte del explotador de un Documento de Garantía de Cumplimiento. Este documento presenta la evidencia que se han cumplido todos los compromisos del proyecto programados para su cumplimiento antes de la remoción del punto de control respectivo. El Documento de Garantía de Cumplimiento deberá ser aceptado por el OR antes que se emita la autorización de remover el punto de control.

6.6.12. Retorno a la Operación Normal

Una vez que todas las aprobaciones del OR han sido concedidas y se hayan eliminado los puntos de control, el explotador procederá a la operación normal.
REFERENCIAS

LISTA DE AUTORES Y REVISORES

Conrado Alfonso Pallarés, CNSN (Cuba)
Diego Encinas Cerezo, CSN (España)
José María Figueras Clavijo, CSN (España)
Alexandre Gromann Araujo de Góes, CNEN (Brasil)
Ricardo Pérez Pérez, CNSNS (México)
Jaime Riesle Wetherby, CCHEN (Chile)
Reinaldo Valle Cepero, ARN (Argentina)