Guía para la Realización de Análisis de Riesgos en los Servicios de Radioterapia.

Julio 2017
“El presente trabajo fue realizado bajo el auspicio y financiación del Foro Iberoamericano de Organismos Reguladores Radiológicos y Nucleares, FORO”.
GUÍA PARA LA REALIZACIÓN DE ANÁLISIS DE RIESGOS EN LOS SERVICIOS DE RADIOTERAPIA
Contenido

GUÍA PARA LA REALIZACIÓN DE ANÁLISIS DE RIESGOS EN LOS SERVICIOS DE RADIOTERAPIA .. 6
Antecedentes ... 6
Objeto de la Guía .. 7
Alcance de la Guía... 7
Estructura de la Guía .. 7
PARTE I: INTRODUCCIÓN ... 8
1.1 Definición de análisis de riesgo .. 8
1.2 Objetivos del análisis de riesgos en un servicio de radioterapia 8
PARTE II: GESTIÓN Y ORGANIZACIÓN DE LOS ANÁLISIS DE RIESGOS 9
PARTE III: PROCESO DE IDENTIFICACIÓN, EVALUACIÓN Y GESTIÓN DEL RIESGO ... 10
3.1 Etapas del análisis de riesgo .. 10
3.2 Identificación de los peligros potenciales ... 11
3.3 Sucesos iniciadores de accidente .. 14
3.4 Análisis de Barreras de seguridad y defensas ... 16
3.5 Estimación de la severidad de las consecuencias potenciales 20
3.6 Estimación del riesgo .. 20
3.7 Análisis de resultados y gestión del riesgo ... 21
3.8 Análisis de incertidumbres ... 22
REFERENCIAS BIBLIOGRÁFICAS ... 24
APÉNDICE 1. EJEMPLO DE UN EQUIPO DE TRABAJO PARA REALIZAR ANÁLISIS DE RIESGO EN UN SERVICIO DE RADIOTERAPIA 30
A1.1 Introducción ... 30
A1.2 Áreas de conocimiento del equipo de trabajo .. 30
A1.3 Tiempo de duración del Estudio .. 32
A1.4 Referencias .. 32
APÉNDICE 2. EJEMPLO DE DEFINICIÓN DEL ALCANCE DE UN ESTUDIO 33
A2.1 Introducción ... 33
A2.2 Alcance del estudio de riesgo .. 33
A2.3 Referencias .. 34
APÉNDICE 3. ACTIVIDADES DE GARANTÍA DE LA CALIDAD DURANTE EL ANÁLISIS DE RIEGOS .. 34
A3.1 Introducción ... 34
A3.2 Objetivos y organización de la garantía de la calidad 34
A3.3 Ejemplo de verificaciones realizadas al estudio de riesgos 35
A3.4 Referencias .. 37
APÉNDICE 4. EJEMPLO DE DESCRIPCIÓN DE TAREAS Y FUNCIONES 38
A4.1 Introducción ... 38
A4.2 Diagramas de flujo y de árboles de proceso ... 38
A4.3 Referencias .. 40
APÉNDICE 5. UTILIZACIÓN DEL ANÁLISIS HISTÓRICO DE ACCIDENTES E INCIDENTES EN LA IDENTIFICACIÓN DE PELIGROS 41
A5.1 Introducción ... 41
A5.2 Descripción del método .. 41
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15.1 Introducción</td>
<td>88</td>
</tr>
<tr>
<td>A15.2 Explicación del método</td>
<td>88</td>
</tr>
<tr>
<td>A15.3 Ejemplo de aplicación</td>
<td>89</td>
</tr>
<tr>
<td>A15.4 Referencias</td>
<td>90</td>
</tr>
<tr>
<td>LISTA DE PARTICIPANTES</td>
<td>91</td>
</tr>
</tbody>
</table>
GUÍA PARA LA REALIZACIÓN DE ANÁLISIS DE RIESGOS EN LOS SERVICIOS DE RADIOTERAPIA.

Antecedentes

La radioterapia, tanto si es curativa como si es paliativa, tiene tres aspectos importantes: eficacia del tratamiento, calidad de vida y seguridad [1]. Desde el punto de vista de la seguridad, la radioterapia es un caso muy especial, ya que es la única aplicación de las radiaciones en la que las personas están sometidas directamente a un intenso haz de radiación (teleterapia) o las fuentes directamente en contacto con los tejidos (braquiterapia), impartiéndose deliberadamente dosis de radiación muy elevadas (del orden de 20 a 80 Gy).

Un tratamiento de radioterapia involucra un proceso muy complejo, con una sucesión de actuaciones, en las que interactúan distintos profesionales de un grupo multidisciplinario. Por ejemplo, en el caso de la terapia de haces externos de radiación, el tratamiento se fracciona entre 20 y 40 sesiones, cada una de las cuales requiere la selección de un elevado número de parámetros. Cada día se han de tratar un gran número de pacientes, muchos de ellos con parámetros similares pero diferentes, lo cual propicia la posibilidad de cometer errores humanos.

Existe abundante bibliografía con informes detallados de casos de las exposiciones accidentales más severas [2-6] así como de una colección de resúmenes de un centenar de exposiciones accidentales [7]. Estos informes han dado a conocer las lecciones aprendidas, las causas y factores que contribuyeron, los cuales permiten identificar medidas preventivas, tales como la necesidad de verificaciones redundantes e independientes de los aspectos identificados como críticos.

Estos estudios retrospectivos, aunque necesarios, no son suficientes, porque no contemplan otros accidentes, que o no han ocurrido aún o no se han dado a conocer, pero que también son posibles. Se requiere por tanto, implementar un enfoque proactivo que se anticipe a la probable ocurrencia de otros accidentes y que identifique aspectos débiles o vulnerables en el proceso de tratamiento, con vistas a adoptar medidas que eviten las exposiciones accidentales.

Para implementar este enfoque proactivo se requiere aplicar técnicas de análisis de riesgo. Ya existen varios trabajos que muestran la forma en que estas técnicas han sido ajustadas y aplicadas a los tratamientos de radioterapia entre ellos: la aplicación de el Análisis Probabilista de Seguridad (APS) al proceso de radioterapia con haces externos con 60Co [8], y de Acelerador Lineal de uso médico (LINAC) [9], la aplicación de la técnica de árboles de fallo en tratamientos de braquiterapia [10], y la aplicación de la técnica de matrices de riesgo en tratamientos de Radioterapia con haces externos de 60Co, LINAC y braquiterapia de alta y baja tasa de dosis [11]. La aplicación de estas técnicas de análisis de riesgo ha demostrado su utilidad para los usuarios y para los reguladores y en varios países se considera que deben formar parte de las evaluaciones de seguridad que se realizan como parte del proceso de autorizaciones de esta práctica.

El presente documento permite definir los requisitos que deben cumplir los análisis de riesgo en la práctica de Radioterapia y sugiere mediante ejemplos las técnicas que pueden ser utilizadas en la realización de estos análisis.
Objeto de la Guía
El objeto de este documento es proporcionar ideas y recomendaciones para la realización de análisis de riesgos en los servicios de radioterapia, lo que facilitará la transferencia de buenas prácticas y ayudará a establecer un marco común entre autoridades competentes para realizar este tipo de evaluación.

Alcance de la Guía
En este documento se establecen algunas de las metodologías aplicables para llevar a cabo un análisis de riesgos en un servicio de radioterapia.
Este documento pretende ser de utilidad para:
− La elaboración de los análisis de riesgos en los servicios de radioterapia.
− La revisión de su contenido por parte de las Autoridades Reguladoras.
Este documento se dirige fundamentalmente a:
− Usuarios o entidades de radioterapia que en cumplimiento con la legislación nacional vigente en materia de seguridad radiológica deban presentar un análisis de riesgo dentro de la evaluación de seguridad o del plan de garantía de calidad como parte del proceso de solicitud de autorización.
− Usuario o entidades de radioterapia que, aún sin tener que cumplir con requisitos regulatorios relativos a la realización de análisis de riesgo deseen realizar un estudio de este tipo en sus instalaciones.
− Usuario o entidades de radioterapia que deban realizar un estudio de análisis de riesgos de sus instalaciones en virtud de alguna modificación a sus equipos, procesos o instalaciones.
− Entidades que prestan servicios de asesoría y entre estos servicios realizan este tipo de análisis.
− Autoridades competentes que evalúan los análisis de riesgos presentados por los usuarios o entidades reguladas

Estructura de la Guía.
Este documento está estructurado en cuatro partes, detalladas a continuación:
− **Parte I. Introducción**: Se explica qué es un análisis de riesgo y el propósito, alcance y características fundamentales de este tipo de estudio.
− **Parte II. Gestión y organización de los análisis de riesgos**: Brinda información sobre el equipo responsable del análisis de riesgos, el alcance que debe tener el estudio y los criterios de gestión y calidad que deberá garantizarse durante todo el análisis de riesgos.
− **Parte III. Proceso de identificación, evaluación y gestión del riesgo**: Brinda información detallada sobre cada uno de los pasos del análisis de riesgos, con explicaciones sobre los aspectos de mayor relevancia.
− **Parte IV. Apéndices**: Se ofrecen ejemplos detallados sobre módulos clave de los análisis de riesgos los cuales proporcionan al lector referencias sobre cómo se han conducido y elaborado estudios de riesgos en radioterapia.
PARTE I: INTRODUCCIÓN

1.1 Definición de análisis de riesgo.

101 El concepto de riesgo asociado a una instalación o un proceso toma en cuenta los siguientes factores: el daño que se puede producir derivado del funcionamiento inadecuado de la instalación o proceso, y la probabilidad (o frecuencia, si se fija una referencia temporal) de que se produzca dicho daño, tomándose habitualmente su producto como valor numérico de dicho riesgo.

102 El análisis de riesgo en el ámbito de la radioterapia consiste en el uso sistemático de la información disponible para identificar los peligros de la radioterapia que pueden dar lugar a efectos adversos o incidentes y estimar los riesgos. Por ello constituye una herramienta para controlar los riesgos a través de su predicción y del estudio de los factores que los determinan, facilitando la toma de decisiones fundamentadas para, en primer lugar, prevenir accidentes y, en segundo lugar, minimizar sus consecuencias en caso de ocurrencia.

1.2 Objetivos del análisis de riesgos en un servicio de radioterapia

103 Los objetivos de un análisis de riesgos serán los siguientes:

a. Identificar los riesgos asociados a cada etapa del proceso de radioterapia y los equipos utilizados en ella.

b. Obtener información de las causas, probabilidades de ocurrencia y consecuencias de los peligros potenciales identificados para gestionar de manera efectiva los riesgos asociados.

c. Identificar las medidas preventivas, de protección y de mitigación de consecuencias existentes en el servicio de radioterapia y relacionarlas con cada uno de los riesgos potenciales.

d. Identificar las oportunidades de minimizar los riesgos existentes.

e. Crear un inventario dinámico de riesgos potenciales que sea de fácil comprensión por todos los miembros de la organización.

104 El grado de detalle del análisis de riesgo se definirá aplicando el denominado “enfoque gradual” (BSS) [12]. Este tiene en cuenta el uso de nuevas tecnologías de radioterapia, nuevas prácticas y procedimientos: El alcance se llevará a cabo teniendo en cuenta aspectos tales como el proceso de tratamiento del servicio de radioterapia objeto de estudio, las partes del proceso que sean objeto del estudio, justificando su elección, el nivel de profundidad o detalle que se requiere en el análisis, justificado en virtud del objeto y la complejidad de los procesos o actividades analizados, y por último los grupos de personas que son relevantes para el estudio, por ejemplo, trabajadores, miembros del público o pacientes.
PARTE II: GESTIÓN Y ORGANIZACIÓN DE LOS ANÁLISIS DE RIESGOS.

2.1 Relación del programa de garantía de calidad del servicio y el análisis de riesgo.

201 El equipo de trabajo debe estar integrado por profesionales de diversas disciplinas con suficiente formación y experiencia en los métodos y técnicas para la evaluación de riesgos, así como en la actividad objeto de análisis y otros aspectos afectados por el alcance del estudio, logrando una adecuada combinación de personas con experiencias en distintos campos. En ocasiones puede ser conveniente introducir expertos de un servicio de radioterapia análogo, especialmente cuando se trate de un nuevo servicio de radioterapia.

202 El equipo de trabajo será responsable de proporcionar información fiable y útil para la toma de decisiones. Durante el desarrollo del estudio pueden modificarse las condiciones y la composición del equipo en función de los datos generados.

203 El volumen de trabajo que se requiere para la ejecución de un análisis de riesgo demanda un alto compromiso por parte de la dirección del servicio de radioterapia en términos de la participación de su personal en todas las etapas del estudio.

204 Para todo el proceso debe establecerse un sistema que garantice la calidad del análisis, incluyendo procedimientos para llevar a cabo revisiones cruzadas, interdisciplinarias e independientes del análisis de riesgo.

2.2 Relación del programa de garantía de calidad del servicio y el análisis de riesgo.

205 El análisis de riesgos debe formar parte del programa de garantía de calidad del servicio.

206 La realización del análisis de riesgo debe ser aprobado por el nivel jerárquico más alto de la organización debido a sus implicaciones, entre otras, con los aspectos estratégicos y financieros de la práctica. Para su aprobación deberá demostrarse que el estudio ha sido exhaustivo, sistemático y estructurado.

207 Para que un análisis de riesgo se considere “exhaustivo”, el mismo deberá demostrar que se han considerado todos los peligros posibles, en correspondencia con el alcance acordado.

208 El estudio se considerará “sistemático” si se emplea un proceso secuencial, continuo, lógico, transparente y reproducible.

209 Debido a que el proceso de análisis de riesgos no es lineal y algunos pasos pueden solaparse o realizarse de manera cíclica el análisis será “estructurado” es decir, debe existir un flujo lógico a lo largo de todo el proceso que posibilite el vínculo entre todas las fases y etapas del estudio. Dado que el entorno de las organizaciones, así como los avances de la tecnología son dinámicos, el análisis de riesgo debe ser un proceso que se revise periódicamente, atendiendo a los cambios producidos en la instalación.
PARTE III: PROCESO DE IDENTIFICACIÓN, EVALUACIÓN Y GESTIÓN DEL RIESGO.

3.1 Etapas del análisis de riesgo.

301 Un análisis de riesgos orientado a la prevención de accidentes implica, de manera general, las etapas que se muestran en la figura 3.1.

Figura 3.1: Etapas de la evaluación de riesgos

302 La primera pregunta: “¿Qué puede ocurrir?” se refiere en principio a todas las circunstancias que pueden dar origen a efectos adversos. La naturaleza de la cuestión es puramente cualitativa y da origen al bloque de identificación de posibles peligros. El objetivo de esta fase es obtener una lista exhaustiva dentro de los límites del análisis de todas aquellas desviaciones (fallo y errores) que:

a. puedan producir un incidente o un efecto adverso y

b. tengan una probabilidad razonable de producirse, o que ya han ocurrido.

303 Una vez identificados los errores y fallos (sucesos iniciadores) que pueden conducir a este tipo de situaciones, se pasa a la segunda etapa la cual se caracteriza por la pregunta: ¿Cuáles son las consecuencias? Dependiendo del alcance del estudio, la evaluación de la severidad de las consecuencias puede estimarse de manera cualitativa o cuantitativa.

304 La tercera etapa del análisis tiene como objetivo responder a la pregunta: ¿Cuál es la frecuencia estimada de que ocurra cada fallo o error identificado?. Esta frecuencia puede ser estimada en términos de número de veces que suceden por año y deberá estar sustentada en lo posible en datos históricos y/o estadísticos nacionales y/o internacionales.

305 Una vez identificados los sucesos que pueden dar origen a daño potencial y estimada la magnitud de éstos daños y su frecuencia de ocurrencia se procederá a estimar la factibilidad de dichos sucesos, ya sea mediante métodos cualitativos, semi-cuantitativos o cuantitativos, evitando con ello hipótesis fantasiosas o exageradas, pero sin descartar aquellas situaciones extrañas que puedan ocurrir al mismo tiempo.
Con esta información se está en condiciones de:

a. establecer una jerarquía de riesgos o de prioridades de reducción de riesgos;

b. decidir entre las opciones existentes (procedimientos para obtener el aumento de seguridad deseado en caso de que se estimen acciones de reducción del riesgo necesarias);

c. justificar las decisiones tomadas.

3.2 Identificación de los peligros potenciales.

La identificación de los peligros potenciales es de fundamental importancia pues cualquier peligro (que no haya sido identificado no puede ser lógicamente objeto de un estudio). En ocasiones, estos son evidentes pero en otros casos no lo son tanto y se requiere de un análisis de cierta profundidad para desentrañar la causa de eventos adversos o incidentes a los que pueden dar lugar. Debe haber sido previamente identificado para ser objeto de estudio.

Para el proceso de identificación de peligros se deberá contar con una descripción lo más completa y detallada posible del servicio de radioterapia, sus procesos y equipos, recopilando toda la información relevante y verificando su exactitud. Pueden ser muy útiles los estudios realizados con anterioridad, aunque no se deberá asumir automáticamente que éstos son correctos o que las suposiciones e hipótesis del estudio previo son válidas para el nuevo análisis.

Son muchas las metodologías que se han desarrollado para identificar los peligros potenciales asociados a una actividad. Las principales diferencias entre unas y otras radican habitualmente en la mayor o menor exhaustividad y precisión de las técnicas y herramientas con las que trabajan, la información de partida que precisan, y como consecuencia de todo ello, el nivel de detalle de los resultados obtenidos. Un ejemplo de los métodos de identificación de peligros se muestra en la Tabla 3.1.

<table>
<thead>
<tr>
<th>Método</th>
<th>Resumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lista de comprobación (check list)</td>
<td>Reflejan la experiencia acumulada, y por tanto puede ser una valiosa herramienta para la identificación de peligros. No se recomienda que se utilice como única herramienta ya que no hay certeza de que cubran todos los peligros posibles, particularmente los específicos de una instalación.</td>
</tr>
<tr>
<td>Registros históricos de accidente</td>
<td>Los incidentes y los accidentes que han tenido lugar con anterioridad en el mundo, proporcionan una valiosa información en relación a la manera en que los mismos han ocurrido. Como estos sucesos no cubren el espectro total de los posibles accidentes se recomienda que este tipo de herramienta se utilice como una verificación adicional de que se han cubierto todos los accidentes acaecidos.</td>
</tr>
<tr>
<td>Método</td>
<td>Resumen</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Análisis de Modos de Fallos y Efectos (FMEA)</td>
<td>Método inductivo altamente estructurado, el cual consiste en la subdivisión de un sistema en varios subsistemas hasta llegar al nivel de componente y para cada uno de ellos se analizan los posibles modos de fallo o errores humanos, sus causas y posibles efectos. Derivadas de esta herramienta se conocen el FMEAH (FMEA-Humano), el HFMEA (Healthcare-FMEA Análisis de modos de fallos y efectos para la salud, por sus siglas en inglés), el FMECA (Análisis de modos de fallo y criticidad).</td>
</tr>
<tr>
<td>Análisis de Peligros y Operabilidad) HAZOP</td>
<td>Método inductivo altamente estructurado que busca identificar las causas y consecuencias de las desviaciones de la intención original del diseño de un proceso. Ha sido muy utilizado en la industria de procesos pero que hasta la fecha ha sido poco aplicado al análisis de riesgos en radioterapia.</td>
</tr>
<tr>
<td>¿Qué pasa si …? (What if)</td>
<td>Método inductivo simplificado basado en una serie de preguntas del tipo qué pasa si…? , ajustadas a posibles desviaciones y fallos que pueden tener lugar en una instalación. Es un método menos estructurado que el FMEA y el HAZOP por lo que pudieran omitirse involuntariamente la detección de algunos peligros durante su utilización.</td>
</tr>
<tr>
<td>Análisis de Tareas (Task Analysis)</td>
<td>Método desarrollado específicamente para identificar los peligros asociados a los factores humanos, los errores de procedimiento y la interfase hombre-máquina.</td>
</tr>
<tr>
<td>Árboles de Fallo</td>
<td>Método gráfico deductivo para analizar las combinaciones de fallos y errores que pueden provocar consecuencias no deseadas. Entre sus principales ventajas está la determinación de los conjuntos mínimos de fallo mediante la utilización del algebra booleana [9], la determinación de fallos causa común y la posibilidad de cuantificar la probabilidad de ocurrencia de un accidente.</td>
</tr>
<tr>
<td>Árboles de Sucesos</td>
<td>Método gráfico inductivo que analiza las posibles combinaciones que pueden tener lugar a partir de la ocurrencia de un suceso iniciador de accidente y el éxito o fallo de las barreras y medidas de seguridad existentes. Como los incidentes constituyen el punto de partida, esta herramienta debe ser combinada con otras como el FMEA o el HAZOP. Para cuantificar los accidentes suele ser utilizada de manera conjunta con los árboles de fallo.</td>
</tr>
<tr>
<td>Método</td>
<td>Resumen</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Diagrama de Barreras (BowTie)</td>
<td>Método gráfico que describe las causas y consecuencias de un evento y analiza las barreras preventivas que existen para evitar que una causa conduzca al denominado “suceso tope” y las barreras de mitigación dispuestas para disminuir la probabilidad o severidad de la consecuencia potencial.</td>
</tr>
<tr>
<td>Matrices de Riesgo</td>
<td>Método sistemático y simplificado en el cual se efectúa un análisis combinado de la frecuencia de ocurrencia del evento que da inicio al accidente, la probabilidad de errores humanos o fallas de barreras de seguridad y las consecuencias de sus efectos. que utiliza herramientas tales como el FMEA, Qué pasa si …?., Es una herramienta diseñada para obtener una visión global de todo un proceso, y proponer mejoras a los aspectos que contribuyen al riesgo de un accidente., representa una forma estructurada para establecer prioridades en la reducción de riesgos.</td>
</tr>
</tbody>
</table>

310 La herramienta de identificación de los peligros potenciales que se seleccione deberá ser sistemática y estructurada:

 a. permitir la identificación de los peligros que no hayan ocurrido con anterioridad.
 b. ser conocida y familiar para el equipo de expertos que realiza el estudio.

311 La elección de los métodos más detallados y exhaustivos puede resultar imprescindible en los siguientes casos cuando:

 a. no se conocen con certeza las causas subyacentes de los peligros potenciales
 b. se precisa su división en partes más elementales o detalladas del suceso peligroso.
 c. se utilizan nuevas tecnologías
 d. la complejidad del proceso evaluado es muy alta

312 La identificación de los peligros potenciales debe realizarse cuestionando sistemáticamente cada parte del proceso, con el objetivo de determinar cualquier peligro posible y sus causas. Una vez que los peligros son identificados y evaluados, se definen sus consecuencias asumiendo que no existen barreras o medidas de seguridad para prevenir o mitigar dicha consecuencia. La figura 3.2 muestra el proceso iterativo completo que se emplea para identificar los peligros potenciales asociados a un proceso.
Cómo resultado de este paso debe obtenerse un listado lo más exhaustivo posible de los peligros asociados a una instalación o proceso, así como las principales causas que lo pueden originar y las posibles consecuencias asociadas, según el siguiente formato (Tabla 3.2):

<table>
<thead>
<tr>
<th>No.</th>
<th>Peligro potencial</th>
<th>Causas</th>
<th>Consecuencias potenciales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Sucesos iniciadores de accidente.

Durante el proceso de identificación de los peligros potenciales se obtienen dos tipos de peligros o sucesos:

a. Aquellos sucesos que **desencadenan o inician secuencias que pueden dar lugar a un efecto adverso** y que requieren ser interceptados por los medios o sistemas de seguridad (o por acciones o procedimientos) para que no se produzca la consecuencia indeseada. Son conocidos como sucesos iniciadores de accidente (o iniciador) y se definen como **los fallos de equipo, errores humanos o sucesos externos que puede conducir a efecto adverso si fallan las medidas previstas para prevenirla**.

b. Aquellos sucesos que **se corresponden a los fallos de la defensa en profundidad**, es decir fallos de los propios sistemas de seguridad y barreras que se interpondrán en la evolución del suceso iniciador **hacia un potencial accidente**. Su efecto solo sería apreciable después de ocurrido un iniciador y en las secuencias accidentales siempre deben aparecer acompañados de los iniciadores.
Conviene efectuar la separación entre sucesos iniciadores de aquellos que son fallos de los sistemas de defensa en profundidad. Esto se realiza con el propósito de centrarse en los primeros (SI) y que los modelos sean más fáciles de comprender y de sistematizar.

El listado de fallos de equipo y errores humanos que constituyen sucesos iniciadores de efectos adversos debe obtenerse considerando todos los posibles enfoques (Ver figura 3.3):

a. Sucesos iniciadores ocurridos en otras instalaciones: La ventaja de este método radica en que se refiere a incidentes ya ocurridos, por lo que los sucesos iniciadores identificados con su uso son indudablemente reales.

b. Adaptación de listados de sucesos iniciadores genéricos publicados: Es muy útil referirse a listados de sucesos iniciadores de accidente utilizados en análisis de seguridad de prácticas similares y que hayan sido postulados a partir de la aplicación de técnicas de identificación de peligros en esas instalaciones. En muchos casos éste ha sido el procedimiento utilizado como punto de partida en la realización de estudios de riesgos.

c. Aplicación de la técnica de identificación de peligros potenciales descrita en el epígrafe 3.2.

d. Experiencia de la propia instalación: Siempre que sea posible, el listado de sucesos se debe complementar con la experiencia operativa de la instalación, ya que se pueden incluir sucesos que no hayan progresado en un accidente debido a la actuación exitosa de los dispositivos y medidas de seguridad, pero que en otra circunstancia sus consecuencias potenciales hubieran sido diferentes.

En la práctica, los factores humanos, como la falta de capacitación y el incumplimiento de los procedimientos, son factores importantes que contribuyen a incidentes y accidentes. En consecuencia, en la determinación de los sucesos iniciadores debería prestarse especial atención a la posibilidad de errores humanos y sus consecuencias. Por otra parte, con el uso de las nuevas tecnologías cada vez cobra mayor importancia e interés el análisis de los fallos informáticos. Así mismo, debe analizarse cuidadosamente el efecto de las modificaciones en los procedimientos de uso de los equipos y programas informáticos.
Figura 3.3 Estrategia para la identificación de sucesos iniciadores

Con el fin de documentar y presentar más fácilmente el elevado número de sucesos iniciadores identificados, éstos se agrupan según los siguientes criterios:

a. Sucesos que tienen barreras de seguridad iguales, tanto si se trata de barreras para prevenir como para mitigar la posible consecuencia del suceso iniciador.

b. Sucesos que pueden conducir a exposiciones accidentales iguales.

c. Sucesos que pueden reacomodarse bajo una misma definición

Como resultado de este paso debe obtenerse un listado de los sucesos iniciadores de accidentes, según el siguiente formato:

<table>
<thead>
<tr>
<th>No.</th>
<th>Denominación del Suceso Iniciador de Accidente</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Análisis de Barreras de seguridad y defensas.

Las barreras de seguridad y defensas pueden ser dispositivos asociados al equipo (enclavamientos o bloqueos, o alarmas), procedimientos escritos que aumentan la fiabilidad de las acciones humanas o barreras físicas que separan o alejan la fuente de peligro.

La distinción entre las barreras y los sucesos iniciadores (errores y fallos) es fundamental porque cuando se analizan las causas de los accidentes ocurridos siempre se observa que han fallado o carecido de una o más de las barreras previstas. Por ello en un estudio de riesgos es tan importante conocer tanto los
iniciadores como los fallos del sistema de defensa en profundidad. Puede suceder que una barrera se utilice para hacer frente a muchos iniciadores y aparezca formando parte de muchas secuencias accidentales y, en ese caso, actuar o dirigir los esfuerzos sobre esa barrera puede ser tan efectivo como actuar sobre el suceso iniciador más frecuente.

Durante el análisis conviene distinguir tres tipos de barreras:

a. Aquellas que evitan o disminuyen la probabilidad de que ocurra un suceso iniciador. Este tipo de barreras son las más preventivas de todas debido a que impiden que ocurran los eventos que desencadenan los efectos adversos.

b. Aquellas encaminadas a detectar un suceso iniciador e impedir sus consecuencias. La importancia de las mismas radica en gran medida en que contribuyen a que los sucesos no deriven en un accidente, sin embargo su fallo o indisponibilidad por lo general se mantienen ocultos hasta que ocurren los iniciadores.

c. Por último aquellas que detectan y mitigan la severidad de las consecuencias de una exposición accidental. La importancia de este tipo de barreras es más significativa en la medida en que su fallo aumenta la severidad de las consecuencias derivadas del suceso iniciador.

A la hora de analizar las barreras deben distinguirse aspectos tales como:

a. Suficiencia: evalúa si la barrera es suficiente para cumplir la función de seguridad o si se requiere la activación o disponibilidad de algún otro elemento o componente.

b. Fiabilidad/Disponibilidad: analiza la fiabilidad de la barrera y la posibilidad de detectar con antelación si la misma ha fallado y no es, por tanto, capaz de cumplir su función de seguridad en caso de demanda.

c. Robustez: analiza la efectividad de la barrera para cumplir la función de seguridad, así como su independencia y vulnerabilidad ante fallos de causa común. [9]

d. Especificidad: analiza si la activación de una barrera puede conllevar el aumento del riesgo de otro tipo de suceso.

e. Condiciones latentes de fallos: analiza si existen causas tales como decisiones organizacionales, errores o violaciones comunes que degradan las barreras existentes.

f. Con las nuevas tecnologías las barreras de tipo software adquieren cada vez mayor importancia. A la hora de evaluar una barrera de este tipo debe analizarse su robustez

3.5 Postulación de los escenarios de los accidentes.

Las exposiciones accidentales suelen ocurrir como resultado de la combinación de varios factores. En ocasiones, los análisis de riesgos realizados no consideran estas combinaciones de sucesos o las descartan por considerarlas “no creíbles”. Es por ello que la siguiente etapa del estudio tiene por objeto establecer, a partir de los sucesos iniciadores identificados (según lo establecido en el epígrafe 3.3), la secuencia de eventos o alternativas posibles que pueden dar lugar a los
distintos escenarios de accidente sobre los cuales se van a estimar las consecuencias potenciales de un determinado suceso.

Un método estructurado para la selección de los posibles escenarios de accidentes implica:

a. Evaluar las funciones de seguridad comprometidas en cada suceso iniciador.

b. Definir las medidas de seguridad que se establecen para garantizar que se lleven a cabo esas funciones de seguridad.

c. Analizar los escenarios de los accidentes seleccionados.

Para evaluar las funciones de seguridad comprometidas en cada suceso iniciador se analizan cuatro funciones básicas de seguridad que son:

a. **Evitar**: evaluar esta función básica de seguridad implica buscar aquellas medidas que pudieran evitar que ocurra el suceso iniciador analizado.

b. **Prevenir**: evaluar esta función básica de seguridad implica buscar aquellas medidas que pudieran reducir la frecuencia de ocurrencia del suceso iniciador analizado.

c. **Detectar y Controlar**: evaluar esta función básica de seguridad implica buscar aquellas medidas que pudieran detectar que ha ocurrido el suceso iniciador analizado y a su vez evitar que se materialice el accidente con las consecuencias postuladas.

d. **Detectar y Limitar**: evaluar esta función básica de seguridad implica buscar aquellas medidas que pudieran detectar que ha ocurrido un accidente en el curso del mismo y limitar sus consecuencias en cuanto a la magnitud de las dosis recibidas por las personas y la cantidad de personas afectadas.

Los análisis de los escenarios de accidente pueden incluir las siguientes situaciones:

a. **Un suceso iniciador que potencialmente puede provocar una única consecuencia adversa**: En algunos análisis de seguridad se particulariza el análisis de un suceso iniciador a una única consecuencia indeseada, por ejemplo un árbol de sucesos para el iniciador “entrada de una persona a la sala de tratamiento al área restringida de alta radiación”, que provoca la consecuencia “exposición radiológica accidental” del trabajador ocupacionalmente expuesto o el público.

b. **Un suceso iniciador que potencialmente puede provocar distintas consecuencias adversas dependiendo de cuándo se detecte**: Por ejemplo, un suceso iniciador denominado “error en la administración del tratamiento de un paciente”, con dos consecuencias posibles, “incidente recuperable”, si funciona con éxito la detección por parte del médico en la consulta semanal; y la segunda consecuencia “exposición accidental”, con efectos deterministas sobre el paciente, si no funciona con éxito la detección por parte del médico.

c. **Múltiples iniciadores que tienen lugar de manera independiente y que dan lugar a la misma consecuencia adversa**: Algunos estudios solo definen una única consecuencia, por ejemplo “Administración de dosis
errónea”, pero sí analizan diferentes iniciadores que pueden provocar dicha consecuencia, con barreras diferentes, dependiendo del tipo de iniciador.

d. **Varios iniciadores que cada uno puede provocar distintas consecuencias adversas:** Cuando el estudio incluye diferentes iniciadores y cada iniciador puede provocar una o varias consecuencias, según el caso. Por ejemplo, cuando se detalla el tipo de exposición accidental: sobre irradiación, subirradiación, partes no irradiadas del volumen blanco, dosis no homogéneas, etc.

328 Las secuencias accidentales pueden representarse utilizando métodos tabulares o gráficos.

329 Cuando se utilizan métodos tabulares (ver Tabla 3.4), la descripción de la secuencia analiza el escenario que se produce cuando han fallado las barreras de seguridad asociadas a un suceso iniciador.

Tabla 3.4 Formato tabular de la secuencia accidental

<table>
<thead>
<tr>
<th>No.</th>
<th>Secuencia Accidental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suceso Iniciador de Accidente</td>
</tr>
<tr>
<td>1</td>
<td>Suceso iniciador xxx</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330 Asimismo, para representarlas gráficamente se utilizan los denominados árboles de sucesos, árboles de fallo o diagramas de barreras (Bow-Tie). En la figura 3.4 se ilustran los escenarios de accidente utilizando árboles de sucesos y árboles de fallo y en la figura 3.5 utilizando diagramas de barreras
Figura 3.4 Representación de los escenarios de accidente utilizando árboles de sucesos y árboles de fallo.

Figura 3.5 Diagrama Típico de BowTie

3.5 Estimación de la severidad de las consecuencias potenciales.

En el análisis de consecuencias potenciales se estudia cuán graves serían los efectos si tuviera lugar el suceso no deseado, por lo que durante el mismo es importante tener en cuenta los factores que influyen en la severidad de las consecuencias. Para ello hay que considerar el número de personas afectadas y la severidad del daño radiológico producido, lesiones con efectos determinísticos o estocásticos, si da como resultado la muerte o invalidez, etc.

3.6 Estimación del riesgo.

La estimación del riesgo deberá realizarse para cada uno de los escenarios de accidentes. El método de estimación del riesgo puede ser cuantitativo, cualitativo o semicuantitativo. La selección del mismo dependerá de la cantidad, tipo y calidad de los datos disponibles, de la complejidad de la instalación, y del nivel de detalle que se requiera.

Los métodos cuantitativos utilizan valores numéricos obtenidos por diversas fuentes (por ejemplo: datos correspondientes a análisis históricos o experimentales, datos proporcionados por fabricantes, datos obtenidos de bancos genéricos) o los calculados mediante la aplicación de modelos matemáticos. Dentro de los métodos cuantitativos son de destacar los árboles de sucesos y árboles de fallo.

Los métodos cualitativos y semicuantitativos utilizan descripciones relativas de la probabilidad y severidad de las consecuencias, combinando información de diversas fuentes, algunas de las cuales pueden ser cuantitativas. Dentro de los
métodos cualitativos y semicuantitativos se encuentran las matrices de riesgo o los índices de riesgo (números de prioridad del riesgo (RPN)), etc..

Tabla 3.5 Fortalezas y debilidades de los métodos de análisis de riesgos

<table>
<thead>
<tr>
<th></th>
<th>Métodos cualitativos y semicuantitativos</th>
<th>Métodos cuantitativos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortalezas</td>
<td>– Son Flexibles: Pueden ser aplicados cuando los datos son insuficientes, o la complejidad es muy alta.</td>
<td>– Utilizan registros estadísticos.</td>
</tr>
<tr>
<td></td>
<td>– Son útiles para la toma de decisiones</td>
<td>– Menos dependientes del criterio de los analistas.</td>
</tr>
<tr>
<td>Debilidades</td>
<td>– Son más dependientes del analista y del criterio de experto</td>
<td>– Facilitan los análisis de sensibilidad, importancias y perfil del riesgo.</td>
</tr>
<tr>
<td></td>
<td>– Se dificulta el análisis de incertidumbres</td>
<td>– Permiten el análisis detallado de los fallos por causa común.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– El uso de números puede conducir a una falsa creencia de exactitud, cuando las incertidumbres son muy altas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Dependen de los registros estadísticos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Requieren de expertos en la metodología</td>
</tr>
</tbody>
</table>

3.7 Análisis de resultados y gestión del riesgo.

Una vez que se ha estimado el riesgo, deben establecerse criterios de aceptabilidad o valor límite, por debajo del cual el servicio de radioterapia se considera aceptablemente seguro.

Como el análisis de riesgo está sujeto a incertidumbres, puede ser inadecuado utilizar criterios rígidos de riesgo y es comúnmente aceptado definir tres niveles amplios de riesgo, aplicando un enfoque diferente a la reducción del riesgo para cada una de las tres regiones, según muestra la figura 3.6.
Para aquellas secuencias accidentales que lo requieran, es decir, cuyo riesgo está en las regiones tolerable e inaceptable, deberán evaluarse las opciones para disminuir el riesgo de manera efectiva, especialmente en aquellos casos donde la severidad de las consecuencias sea muy grande. Antes de aplicar una nueva medida de reducción del riesgo deberá evaluarse cuidadosamente que la nueva medida no cause más problemas que los que corrige.

Estas medidas también pueden ser categorizadas de acuerdo a la siguiente jerarquía:

- **Eliminación**: Constituyen la primera línea de defensa y la más deseable. Consiste en la eliminación del peligro. Es lo más deseable aunque no siempre resulta posible, bien porque no es técnicamente factible o porque no es económicamente viable.

- **Previsión**: Consisten en reducir la frecuencia de aparición de las causas y sucesos iniciadores de accidente. Es decir, los peligros permanecen pero su frecuencia de ocurrencia se reduce.

- **Reducción**: Limita la ocurrencia de accidente una vez producido el SI.

- **Mitigación**: Actúan en respuesta al accidente. Aunque constituyen la última línea de defensa siguen siendo necesarios una vez que ha ocurrido evento adverso

Las medidas de control y reducción del riesgo que se tomen deben ser comprendidas por todos los trabajadores del servicio de radioterapia y debe existir un vínculo claro entre cada medida propuesta, los sucesos iniciadores, las exposiciones accidentales y la severidad de las consecuencias que se pretende que dichas medidas contoren

3.8 Análisis de incertidumbres.

El proceso de análisis y evaluación de los riesgos lleva asociadas incertidumbres que pueden deberse a diversas fuentes como, por ejemplo, la falta de
conocimiento apropiado, el grado de detalle del estudio, la asignación de los valores de probabilidad, la asignación de la frecuencia de los sucesos iniciadores, la simplificación de la realidad asumida en los modelos de estimación de los efectos y consecuencias, la calidad de los datos de entrada introducidos en los modelos, etc. Es importante por tanto, identificar las distintas fuentes de incertidumbres y su contribución a la estimación final del riesgo.
REFERENCIAS

Bibliografía

iv. FORO IBEROAMERICANO DE ORGANISMOS REGULADORES RADIOLÓGICOS Y NUCLEARES Informe del Proyecto sobre: Recomendaciones de seguridad de las instalaciones radiactivas de radioterapia, basadas en la experiencia operacional (lecciones aprendidas) y los resultados de los estudios de APS: Aplicación del método de la matriz de riesgo Volumen 1: texto principal, (http://www.foroiberam.org) (2010)

v. VILARAGUT JJ, FERRO RUBÉN, Metodología para la aplicación de los Análisis Probabilistas de Seguridad a las unidades de cobalto terapia en Cuba. Revista NUCLEUS No. 31 (2002)

xii. RAMIREZ VERÁ MARÍA LUISA et al., Lessons from accidental exposure in modern external radiotherapy, INTERNATIONAL CONFERENCE ON MODERN RADIOTHERAPY ADVANCES AND CHALLENGES IN RADIATION PROTECTION OF PATIENTS VERSAILLES, FRANCE (December 2 – 4, 2009).

xiii. ORTIZ LÓPEZ P. et al., Methods of risk analysis applied to radiotherapy, INTERNATIONAL CONFERENCE ON MODERN RADIOTHERAPY ADVANCES AND CHALLENGES IN RADIATION PROTECTION OF PATIENTS VERSAILLES, France (December 2 – 4, 2009).

xiv. Ortiz López P. et al., The ICRP take-home message, INTERNATIONAL CONFERENCE ON MODERN RADIOTHERAPY ADVANCES AND CHALLENGES IN RADIATION PROTECTION OF PATIENTS VERSAILLES, France (December 2 – 4, 2009).

xv. PATRICE L SPATH, Home study program: Using failure mode and effects analysis to improve patient safety, PAT HICKEY ASSOCIATION OF OPERATING ROOM NURSES. AORN Journal 78, 1; (Jul 2003).

xxi. INTERNATIONAL ATOMIC ENERGY AGENCY, Case studies in the application of probabilistic safety assessment techniques to radiation sources, TECDOC 1494, IAEA, Vienna. (2006).

xxii. DUMÉNIGO C., “Evaluación de la seguridad radiológica de los tratamientos de telecobaltoterapia mediante la utilización del método de la matriz de riesgo”. Trabajo de tesis para optar por el master en Física Médica. InSTEC. (2007).

xxvi. INTERNATIONAL ATOMIC ENERGY AGENCY, The radiological accident at the irradiation facility in Nesvizh, IAEA, Vienna (1996).

xxxvi. H.S. KAPLAN EUROSAT Getting the right blood to the right patient: the contribution of near-miss event reporting and barrier analysis De l’utilisation rigoureuse du sang. (2005).

xxxviii. GUÍA TÉCNICA DE MÉTODOS CUALITATIVOS PARA EL ANÁLISIS DE RIESGOS
GUÍA TÉCNICA DE MÉTODOS CUANTITATIVOS PARA EL ANÁLISIS DE RIESGOS.

CONSEJO DE SEGURIDAD NUCLEAR Instrucción ES-25 del Consejo de Seguridad Nuclear, sobre criterios y requisitos sobre la realización de los análisis probabilistas de seguridad y su aplicaciones a las centrales nucleares. BOE, Madrid, España, (9 de junio de 2010).

MCCOLLIN, CHRIS, Working Around Failure. MANUFACTURING ENGINEER, (February 1999).

EXAMINING RISK PRIORITY NUMBERS IN FMEA, Volume, Reliability Edge Home 4, Issue 1 http://www.reliasoft.com/newsletter/2q2003/rpns.htm

ROBERT C. LEE; KARIE-LYNN KELLY; CHRIS NEWCOMB; DAVID COOKE; EDIDIONG EKAETTE; PETER CRAIGHEAD; PETER DUNSCOMBE “Quantitative approaches to patient safety. Research in Risk Analysis and Risk Management as Applied to Radiotherapy” ALBERTA HERITAGE FOUNDATION FOR MEDICAL RESEARCH, Canada, (2004).

Contenido

APÉNDICE 1. EJEMPLO DE UN EQUIPO DE TRABAJO PARA REALIZAR ANÁLISIS DE RIESGO EN UN SERVICIO DE RADIOTERAPIA. 30

APÉNDICE 2. EJEMPLO DE DEFINICIÓN DEL ALCANCE DE UN ESTUDIO. ... 33

APÉNDICE 3. ACTIVIDADES DE GARANTÍA DE LA CALIDAD DURANTE EL ANÁLISIS DE RIESGOS. ... 34

APÉNDICE 4. EJEMPLO DE DESCRIPCIÓN DE TAREAS Y FUNCIONES. ... 38

APÉNDICE 5. UTILIZACIÓN DEL ANÁLISIS HISTÓRICO DE ACCIDENTES E INCIDENTES EN LA IDENTIFICACIÓN DE PELIGROS. 41

APÉNDICE 6. EJEMPLO DEL MÉTODO DE MATRICES DE RIESGO. 45

APÉNDICE 7. EJEMPLO DE FMEA. 52

APÉNDICE 8. EJEMPLO DE LA METODOLOGIA DE RIESGO HAZOP. 62

APÉNDICE 9. EJEMPLO DEL MÉTODO DEL NÚMERO DE PRIORIDAD DEL RIESGO (RPN). .. 67

APÉNDICE 10. EJEMPLO DE DIAGRAMAS DE BARRERAS (BOW TIE). ... 72

APÉNDICE 11. EJEMPLO DE ÁRBOLES DE SUCESOS. 75

APÉNDICE 12. EJEMPLO DE ÁRBOLES DE FALLOS. 78

APÉNDICE 13. EJEMPLOS DE ANÁLISIS DE SENSIBILIDAD Y DE IMPORTANCIA. ... 50

APÉNDICE 14. EJEMPLO DE ANÁLISIS CUALITATIVO DE INCERTIDUMBRES. ... 84

APÉNDICE 15. EJEMPLO DE ANÁLISI CUANTITATIVO DE INCERTIDUMBRES. ... 88
APÉNDICE 1. EJEMPLO DE UN EQUIPO DE TRABAJO PARA REALIZAR ANÁLISIS DE RIESGO EN UN SERVICIO DE RADIOTERAPIA.

A1.1. Introducción.

La realización de un estudio de riesgo a un servicio de radioterapia constituye un proyecto complejo con requisitos particulares. En este Apéndice se ejemplifica la composición y experiencia necesaria del equipo de trabajo así como la duración aproximada del estudio.

A1.2. Áreas de conocimiento del equipo de trabajo.

A la hora de seleccionar el equipo de trabajo, al menos una persona debe tener suficiente conocimiento de los métodos y herramientas de análisis de riesgo y factores humanos.

Como durante el tratamiento con radioterapia participa un equipo multidisciplinario de especialistas con diferentes responsabilidades (oncólogos, físicos, técnicos, etc.), es conveniente que el equipo de trabajo esté conformado por expertos en cada uno de estos temas, que a la vez que sirven de consultores a los analistas de riesgo, le dan credibilidad al estudio y se involucran en los análisis realizados, sustentan las hipótesis de los modelos e interpretación de los resultados.

Los temas que debe cubrir el equipo de trabajo de un estudio de análisis de riesgos se presentan en la Tabla A1.

TABLA A1. ÁREAS DE CONOCIMIENTOS DEL EQUIPO DE TRABAJO

<table>
<thead>
<tr>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Técnicas de Identificación de Peligros y Análisis de Riesgos</td>
</tr>
<tr>
<td>2. Análisis de Errores Humanos</td>
</tr>
<tr>
<td>3. Seguridad Radiológica y protección radiológica del paciente</td>
</tr>
<tr>
<td>4. Radio oncólogo</td>
</tr>
<tr>
<td>5. Físico Médico</td>
</tr>
<tr>
<td>6. Dosimetrista</td>
</tr>
<tr>
<td>7. Tecnólogo radioterapeuta</td>
</tr>
<tr>
<td>8. Mantenimiento (electro-medicina)</td>
</tr>
</tbody>
</table>

En dependencia de la experiencia del equipo de trabajo y características del servicio, así como del alcance del estudio, una persona acreditada puede ocupar más de una de las posiciones mencionadas en la Tabla A1. Uno de los integrantes del equipo de trabajo debe dirigir y coordinar las diferentes tareas del estudio, así como administrar los
recursos financieros y materiales que se pongan en función del Proyecto. La Tabla A2 presenta las funciones que debe cubrir cada área de trabajo.

TABLA A2. FUNCIONES de cada área de Trabajo.

<table>
<thead>
<tr>
<th>Área</th>
<th>Composición</th>
<th>Funciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis de Riesgo</td>
<td>Análisis de Riesgos</td>
<td>– Facilitar la trasferencia de la metodología</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Conducir los debates y las sesiones técnicas de trabajo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Realizar la modelación y cuantificación de los modelos</td>
</tr>
<tr>
<td></td>
<td>Factores Humanos</td>
<td>– Preparar los reportes parciales y finales del Proyecto</td>
</tr>
<tr>
<td>Seguridad Radiológica</td>
<td>Seguridad radiológica especializados en práctica médica</td>
<td>– Aportar personal con experiencia en calidad de consultores en temas de seguridad radiológica y práctica médica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Informar sobre incidentes en la práctica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Participar en los debates o en las sesiones de trabajo programadas</td>
</tr>
<tr>
<td>Unidad Oncológica</td>
<td>Radio oncólogo</td>
<td>– Aportar personal con experiencia en calidad de consultores en temas de tratamiento con radioterapia</td>
</tr>
<tr>
<td></td>
<td>Físicos Médico</td>
<td>– Suministrar o facilitar el acceso a la información e instalaciones relacionadas con el tema del Proyecto, incluyendo accidentes e incidentes ocurridos</td>
</tr>
<tr>
<td></td>
<td>Dosimetrista</td>
<td>– Participar en los debates de las sesiones de trabajo programadas</td>
</tr>
<tr>
<td></td>
<td>Tecnólogo Radioterapeuta</td>
<td>– Crear condiciones en el Hospital para el trabajo del equipo de especialistas que se realicen en esta instalación</td>
</tr>
<tr>
<td>Electromedicina</td>
<td>Mantenimiento de la unidad</td>
<td>– Aportar personal con experiencia en calidad de consultores sobre el equipamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Suministrar o facilitar el acceso a la información, incluyendo accidentes e incidentes ocurridos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Participar en los debates de las sesiones de trabajo programadas</td>
</tr>
</tbody>
</table>
A1.3. Tiempo de duración del Estudio.

La realización de un estudio de riesgos en radioterapia implica muchas tareas y subtareas, algunas de las cuales pueden ser realizadas en forma paralela y otras requieren realizarse secuencialmente. Por otra parte la estimación del tiempo de duración depende de factores tales como el número, experiencia de las personas, la disponibilidad de documentación, así como el tiempo dedicado al Proyecto.

En la Tabla A3 se muestra un ejemplo de distribución de hombres meses por tareas para realizar un análisis de riesgo cualitativo.

Tabla A3. EJEMPLO DE DISTRIBUCIÓN DE TIEMPO POR TAREAS.

<table>
<thead>
<tr>
<th>Principales Tareas</th>
<th>Tiempo aproximado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipo con experiencia en análisis de riesgo a servicios de radioterapia</td>
</tr>
<tr>
<td>Identificación de peligros, sucesos iniciadores y barreras</td>
<td>1 semana</td>
</tr>
<tr>
<td>Análisis de resultados</td>
<td>1 semana</td>
</tr>
<tr>
<td>Aseguramiento de la Calidad. Revisiones cruzadas e interdisciplinarias</td>
<td>1 semana</td>
</tr>
<tr>
<td>Documentación del análisis de riesgo</td>
<td>1 semana</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 mes</td>
</tr>
</tbody>
</table>

A1.4. Referencias.

APÉNDICE 2. EJEMPLO DE DEFINICIÓN DEL ALCANCE DE UN ESTUDIO.

A2.1 Introducción

En este apéndice se ejemplifica el alcance de un análisis de riesgo a un servicio de radioterapia con haces externos utilizando un acelerador lineal de usos médicos.

A2.2 Alcance del estudio de riesgo

- Se consideraron en el estudio las situaciones del proceso de radioterapia, que podrían dar lugar a exposiciones accidentales, tanto del paciente como del trabajador o público, desde la instalación del equipo hasta el fin del tratamiento, incluyendo las siguientes etapas:
 a. Aceptación y Puesta en servicio del acelerador lineal, del tomógrafo (TC) y del sistema de planificación del tratamiento (TPS).
 b. Prescripción clínica del tratamiento
 c. Adquisición de datos anatómicos del paciente
 d. Delineación de volúmenes
 e. Planificación dosimétrica del tratamiento
 f. Elaboración de Moldes
 g. Sesión Inicial del Tratamiento
 h. Posicionamiento del Paciente para el tratamiento diario
 i. Administración diaria del tratamiento
 j. Revisión Médica del paciente en el curso del tratamiento
 k. Mantenimiento de los equipos,

- Se excluyen las etapas de la radioterapia definidas como Diagnóstico Inicial, estadificación y Definición Terapéutica ya que se parte de la premisa de que estas etapas son realizadas correctamente y que no existen errores médicos durante la ejecución de las mismas.

- Se excluyen las etapas definidas como Evaluación Final del Tratamiento del Paciente y Evaluación de Seguimiento del Paciente (una vez concluido el tratamiento). Estas etapas, aunque importantes por la información que aportan sobre la efectividad del tratamiento administrado de acuerdo a la respuesta y el control de la enfermedad, la detección temprana de posibles recurrencias y los efectos de la irradiación de los tejidos sanos, es un proceso posterior al tratamiento, que rebasa los objetivos de este análisis de riesgo.

- Solo se considera la radioterapia conformada tridimensional (RTC-3D).

- Se considera solo la Tomografía Axial Computarizada como modalidad de adquisición de datos anatómicos del paciente para la Delineación de Volúmenes y Planificación de tratamientos.

- No se considera la simulación y/o verificación del plan de tratamiento en un simulador convencional.

- Toda la transferencia de información entre etapas se realiza por red (imágenes TAC, Volúmenes delineados, Plan de Tratamiento, Tratamientos administrados, etc.) y escrito en la Hoja de Tratamiento.

- Sólo se ha analizado en detalle el acelerador lineal, mientras que los otros equipos tales como el sistema de planificación de tratamientos, el tomógrafo computarizado de simulación, y la dosimetría en vivo se han analizado como...
macro componentes, sin profundizar en detalle en las partes que lo conforman y considerando esencialmente los errores humanos relacionados con su manejo, y no los fallos de los equipos. Respecto al software, se han analizado únicamente los modos de fallo relacionados con la entrada y salida de datos (fallo durante el funcionamiento del software). No se analiza en detalle la programación del software (código fuente).

- No se encuentran incluidas las operaciones que puedan conducir a daños no-radiológico, es decir, no considera peligros mecánicos (colisiones con el paciente), de tipo eléctrico u otros.
- Se han considerado todas las acciones humanas de los diferentes profesionales que intervienen en el proceso de tratamiento, pero se excluyen del análisis aquellas acciones que constituyen la decisión médica. Por tanto, se asume que las actuaciones del médico son acordes con la intención clínica, como por ejemplo, la prescripción de la dosis de tratamiento. Sólo son tenidos en cuenta los errores al registrar por escrito su intención y al comunicar la decisión, así como también el omitir la revisación periódica del paciente.

A2.3. Referencias.

APÉNDICE 3. ACTIVIDADES DE GARANTÍA DE LA CALIDAD DURANTE EL ANÁLISIS DE RIEGOS.

A3.1 Introducción.

En este apéndice se presentan los objetivos y alcance de la actividad de garantía de la calidad y se muestran ejemplos de las tareas y verificaciones que deben realizarse como parte de las actividades de garantía de la calidad del estudio de riesgo.

A3.2 Objetivos y organización de la garantía de la calidad.

Las actividades de aseguramiento de la calidad tienen como propósito elevar el nivel de confianza en el análisis de riesgo y sus resultados, para que pueda ser utilizado por el servicio de radioterapia y evaluado por el órgano regulador.

Los objetivos de la garantía de la calidad de un estudio de riesgo son los siguientes:

- Garantizar el acabado del análisis de riesgo en relación con sus objetivos y alcance.
- Garantizar la adecuada aplicación de metodologías y cálculos.
- Garantizar que los análisis y resultados se han documentado de forma trazable y reproducible.
Cualquiera que sea el sistema de garantía de la calidad, las revisiones al análisis de riesgo deben realizarse de manera independiente, es decir por una persona no implicada directamente en la tarea evaluada y las decisiones técnicas tomadas.

En general se establecen dos tipos de revisiones:

- Internas: Efectuadas por personas pertenecientes al proyecto pero no implicadas en la realización de la tareas sujetas a revisión. Tienen como propósito garantizar tanto el acabado del análisis y la adecuada aplicación de metodologías y cálculos como la trazabilidad y reproducibilidad del mismo.
- Externas: Realizada por personas no integradas al Proyecto y con amplio conocimiento en los temas de análisis de riesgo y tratamiento con radioterapia. Tiene como objetivo analizar la consistencia entre las hipótesis, metodologías, conclusiones en correspondencia con los objetivos y alcance del análisis de riesgo realizado.

La revisión deberá tener un enfoque crítico, cuestionando de manera sistemática todos los aspectos evaluados y realizando análisis alternativos cuando se pretenda confirmar la validez de los análisis, modelos o cálculos.

A3.3 Ejemplo de verificaciones realizadas al estudio de riesgos.

En la tabla A3.1 se ejemplifican algunos de los aspectos más comunes revisados como parte de las actividades de garantía de calidad de un estudio de riesgo.

TABLA A3.1 EJEMPLO DE VERIFICACIONES AL ESTUDIO DE RIESGOS

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tareas y Verificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipo de trabajo</td>
<td>Verificar las calificaciones y experiencia multidisciplinaria del equipo de trabajo</td>
</tr>
<tr>
<td>Objetivos y alcance del análisis de riesgo</td>
<td>Verificar que esté bien definido el propósito para el cual el estudio será utilizado.</td>
</tr>
<tr>
<td></td>
<td>Garantizar que los objetivos y alcance del análisis de riesgo son consistentes con su propósito y las decisiones que se esperan tomar.</td>
</tr>
<tr>
<td>Exactitud de la información</td>
<td>Revisar que la información utilizada está actualizada y es exacta.</td>
</tr>
<tr>
<td>Hipótesis</td>
<td>Verificar que las hipótesis generadas en cada etapa del estudio están claramente descritas y adecuadamente soportadas.</td>
</tr>
<tr>
<td>Métodos y modelos</td>
<td>Verificar que los métodos y modelos reflejan verazmente el funcionamiento del servicio de radioterapia y la evolución de</td>
</tr>
<tr>
<td>Actividad</td>
<td>Tareas y Verificaciones</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Verificar que se hayan identificado todos los peligros | Revisar que los datos de incidentes en la organización y en otros servicios de radioterapia están incluidos en el listado de peligros. Si alguno de ellos es inconcebible, registrar las razones que hacen que estos incidentes no puedan tener lugar en la instalación.
Revisar análisis de riesgos anteriores.
Revisar otros documentos que puedan indicar otros peligros y causas. |
| Verificar los escenarios y secuencias accidentales | Utilizar personas que no hayan participado directamente en el estudio para comprobar un vínculo claro entre cada uno de los iniciadores de accidentes, fallos de barreras y causas de progresión del incidente, verificando que las medidas de control estén realmente implementadas en el servicio de radioterapia en el momento en que se realiza el estudio |
| Datos para la estimación y cuantificación del riesgo | Verificar que las fuentes de información a utilizar están claramente identificadas, son adecuadas y vigentes.
Verificar que el nivel de detalle es consistente con el alcance del proyecto
Verificar el grado de credibilidad de los datos utilizados. |
| Medidas de seguridad adicionales | Verificar que las nuevas medidas de seguridad y barreras que se proponen como resultado del análisis de riesgo son tan efectivas y confiables como se pensó.
Analizar si existe alguna medida de seguridad que podría manejar el peligro de manera más efectiva |
| Análisis de incertidumbres | Verificar que las incertidumbres se identifican y registran de manera explícita para ser analizadas posteriormente |
| Documentación del análisis de riesgo | Verificar que existan informes técnicos de cada parte del análisis de riesgo.
Realizar revisiones cruzadas e interdisciplinarias de toda la documentación generada en el estudio
Verificar la disponibilidad y trazabilidad de toda la documentación
Verificar la credibilidad de los resultados obtenidos |
A3.4. Referencias.

APÉNDICE 4. EJEMPLO DE DESCRIPCIÓN DE TAREAS Y FUNCIONES.

A4.1 Introducción.

En un análisis de riesgo la descripción de tareas y funciones tiene como propósito discretizar el proceso en etapas independientes, identificando claramente las etapas y las tareas asociadas a cada etapa, de manera que facilite el análisis de los peligros asociados a cada paso. En este apéndice se muestran algunos ejemplos de diagramas de flujo y árboles de proceso realizados con este propósito.

A4.2 Diagramas de flujo y de árboles de proceso.

Los Árboles de Procesos y Diagramas de Flujo ilustran el flujo de tareas y actividades que se realizan, respetando siempre que sea posible la secuencia lógica en que se realizan las mismas y representando las interacciones entre las tareas y otras etapas del proceso de tratamiento. Cada etapa debe tener un punto de inicio y un punto final bien discernibles.

En la figura A4.1 se ejemplifica el diagrama general de flujos de un tratamiento de radioterapia con aceleradores lineales y en la figura A4.2 se muestra el diagrama de flujos correspondiente a la etapa de Delineación de volúmenes.

Además de la información gráfica, puede ser conveniente la siguiente información complementaria de cada etapa del proceso de tratamiento:

- **Denominación:** Indica el nombre de la etapa, entendiendo como tal una unidad discreta del proceso de tratamiento con punto de inicio, duración y punto final bien discernibles.

- **Definición y Objetivos:** Se indica una breve definición de la etapa y cuál es el objetivo final que se persigue en el mismo.

- **Breve descripción:** Se describen brevemente las tareas que se deben ejecutar en esta etapa.

- **Resultado que se obtiene:** Indica el resultado o salidas que se obtiene al finalizar la etapa tanto desde el punto de vista del tratamiento como de la documentación, materiales y/o aditamentos que se generan.

- **Responsabilidades y Personal involucrado:** Indica quién es el responsable principal por la ejecución de la etapa y el personal de otras especialidades que interviene en el mismo. Para cada una de las tareas de la etapa el personal que interviene se clasifica en ejecutor, apoyo y supervisor, cuando proceda.

En la figura A4.3 se muestra un ejemplo de árbol de procesos para Braquiterapia.
Figura A4.1 Ejemplo del diagrama general de flujos de un tratamiento de radioterapia con aceleradores lineales.

Figura A4.2 Ejemplo del diagrama de flujos correspondiente a la etapa de Delineación de volúmenes.
Figura A4.3 Ejemplo de un árbol de procesos para Braquiterapia (tomado del IAEA-TECDOC-1494)

A4.3. Referencias

2. FORO IBEROAMERICANO DE REGULADORES RADIOLÓGICOS Y NUCLEARES: Descripción de los Procesos Asociados al Tratamiento de Radioterapia con LINAC P1_RT_02_2006 http://foroiberam.org
APÉNDICE 5. UTILIZACIÓN DEL ANÁLISIS HISTÓRICO DE ACCIDENTES E INCIDENTES EN LA IDENTIFICACIÓN DE PELIGROS.

A5.1 Introducción.

El Análisis histórico de accidentes es un método retrospectivo que consiste en estudiar los accidentes registrados en el pasado en prácticas o instalaciones radiactivas similares. Los accidentes y cuasi accidentes que han tenido lugar en la realidad proporcionan una valiosa información ya que relacionan detalles en relación a la manera en que han ocurrido los incidentes. Existen muchas bases de acceso público como:

- Bibliografía especializada (publicaciones periódicas y libros de consulta)
- Bancos de datos de accidentes informatizados.
- Registro de accidentes de la propia instalación o de las autoridades competentes
- Informes o peritajes realizados normalmente sobre los accidentes más importantes.

A5.2 Descripción del método.

Algunos factores que se deben considerar al plantear y desarrollar un análisis histórico de accidentes son:

1. Determinar la definición de accidentes a analizar:
 - Alcance de los tipos de accidentes a ser estudiados (fuentes, prácticas, instalaciones, transporte).

2. Identificación exacta del accidente:
 - Lugar.
 - Fecha.
 - Instalación o equipos implicados.

3. Identificación de las causas que originaron el accidente (sucesos iniciadores de accidente):
 - Errores humanos (describir el error).
 - Fallo de equipos (describir el modo de fallo).
 - Fallo de diseño o de proceso (describir las causas).

4. Descripción de la secuencia accidental.
 - Análisis de otros factores (errores humanos y modos de fallos de barreras implementadas, medidas de seguridad no implementadas, debilitamiento de la defensa en profundidad, etc.). que permitieron la evolución del accidente y que de haber funcionado correctamente hubieran evitado que el suceso iniciador desencadenara en accidente.

5. Identificación del alcance de los daños causados:
• Pérdida de vidas.
• Lesiones.
• Daños al medio ambiente.
• Pérdidas en instalaciones y daños materiales.
• Evacuación de personas, otras medidas, etc.
• Impacto en la población en general.

6. Descripción y valoración de las medidas aplicadas y, si es posible, de las estudiadas para evitar la repetición del accidente.

Ámbito de aplicación

• En todas las evaluaciones de seguridad, se deben analizar las lecciones aprendidas de los accidentes conocidos y las medidas implementadas para evitar que vuelvan a ocurrir.
• De especial utilidad cuando se aplica a procesos y prácticas de utilización masiva o frecuente.
• Los resultados obtenidos dependen mucho de la calidad y de la información disponible en las fuentes de información consultadas.
• Puede ser de utilidad para hacer una aproximación cuantitativa de la frecuencia de determinados tipos de accidentes, en caso de disponerse de una base estadística suficientemente representativa.

Recursos necesarios

Este es un método relativamente poco costoso dentro del campo del análisis de riesgo. El proceso consiste en la consulta a la fuente o fuentes de información seleccionadas y posteriormente un trabajo de selección y análisis de los resultados obtenidos.

Soportes

a) Publicaciones del OIEA

El Organismo Internacional de Energía Atómica (OIEA) tiene disponibles diversas publicaciones sobre alguno de los principales accidentes asociados al uso de las radiaciones ionizantes que están disponibles en la página web del OIEA:

http://www-pub.iaea.org/MTCD/publications/publications.asp y

En la siguiente tabla se hace un resumen de las principales publicaciones del OIEA relacionadas con accidentes de instalaciones de radioterapia.

<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Datos</th>
<th>Idiomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lessons Learned from Accidental Exposures in Radiotherapy</td>
<td>Safety Reports Series No. 17. 2000, 4720 KB. 10 April 2000.</td>
<td>Inglés</td>
</tr>
<tr>
<td>2</td>
<td>Accidental Overexposure of</td>
<td>2004, 5 March 2004. 1117</td>
<td>Inglés</td>
</tr>
<tr>
<td>No.</td>
<td>Título</td>
<td>Datos</td>
<td>Idiomas</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Radiotherapy Patients in Bialystok</td>
<td>KB)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Goiânia Ten Years Later</td>
<td>1998, 22 December 1998.</td>
<td>Inglés</td>
</tr>
<tr>
<td>6</td>
<td>The Radiological Accident in Goiânia</td>
<td>1988, 16 September 1988. 6550 KB.</td>
<td>Inglés, Español, Francés, Ruso</td>
</tr>
</tbody>
</table>

b) ROSIS

ROSIS son las siglas en inglés de un sistema de información que registra de manera voluntaria sucesos de radioterapia (“Radiation Oncology Safety Information System”). ROSIS permite el intercambio de información sobre seguridad de la comunidad radioterapia. El sistema se basa en el personal profesional de primera línea de las clínicas de radioterapia que reporta incidentes y las acciones correctivas a través de Internet a una base de datos. Más información sobre este sistema se puede encontrar en la página web: www.rosis.info

c) SAFRON

SAFRON (“Safety in Radiation Oncology”) es un registro integrado de notificación voluntaria de incidentes y casi accidentes de la oncología con radiación. Su funcionamiento depende de las instalaciones que registran y comparten los incidentes que ocurren en ellas. El formulario de registro incluye detalles sobre el equipo, el personal y el medio ambiente del centro. Esta información indica la complejidad de los procesos dentro de los departamentos. Se puede utilizar para llevar a cabo análisis de incidentes en relación a la complejidad de la práctica, el medio ambiente laboral y la formación académica de los profesionales que trabajan en una variedad de tipos de clínicas. Más información se puede encontrar en la página web: https://rpop.iaea.org/RPOP/RPoP/Modules/login/safron-register.htm

d) Publicaciones de la International Commission on Radiological Protection (ICRP)

La ICRP ha realizado 2 publicaciones sobre accidentes en radioterapia, éstas son:
• ICRP Publication 112 Preventing accidental exposures from new external beam radiation therapy technologies Task Group No.77, (2010)

Ventajas del método:

• El establecimiento de hipótesis de accidentes se basa en casos reales, por lo que no hay dudas de que pueden ocurrir.

Inconvenientes del método:

• Los accidentes sobre los que se puede encontrar una documentación completa son únicamente los «más importantes».
• No tiene en cuenta en general accidentes de una sola persona o de sub-dosificación.
• En los bancos de datos informatizados, con frecuencia los datos reflejados son insuficientes; las causas quedan a menudo sin identificar.
• Los datos a menudo no son extrapolables a instalaciones de diseños diferentes. Los accidentes producidos en el pasado han tenido en general respuestas en modificaciones o prácticas operativas más seguras que hacen que sea más difícil que se reproduzcan en condiciones similares.

A5.3. Referencias.

l. THE ROYAL COLLEGE OF RADIOLOGISTS, SOCIETY AND COLLEGE OF RADIOGRAPHERS, INSTITUTE OF PHYSICS AND ENGINEERING IN MEDICINE, NATIONAL PATIENT SAFETY AGENCY, BRITISH INSTITUTE OF RADIOLOGY Towards Safer Radiotherapy. The Royal College of Radiologists, London. (2008). Available at: www.rcr.ac.uk
APÉNDICE 6. EJEMPLO DEL MÉTODO DE MATRICES DE RIESGO.

A6.1. Introducción.

El método descrito en este apéndice fue desarrollado para el análisis de riesgo en radioterapia combinando la utilización de herramientas tales como el FMEA, “Qué pasa si …?”, Registro de Accidentes en radioterapia y Matrices de Riesgo. Hasta la fecha este método ha sido aplicado en más de 40 equipos de radioterapia de 7 países.

A6.2. Explicación del Método.

El método de la matriz de riesgo consiste en evaluar la siguiente secuencia lógica mediante la cual ocurren los accidentes. Un determinado error humano o fallo de equipo (suceso iniciador) ocurre con una frecuencia determinada (f). Probablemente el servicio de radioterapia dispondrá de una o varias barreras (enclavamientos, alarmas o procedimientos) capaces de detectar el error o fallo y actuar para evitar que el suceso iniciador se convierta en un accidente. Sin embargo siempre existe una determinada probabilidad (P) de que estas barreras puedan fallar en tal caso ocurrirá el accidente y este se manifiesta con unas consecuencias determinadas (C).

La magnitud que caracteriza la secuencia de ocurrencia de los accidentes es el Riesgo (R), que se calcula como:

\[R = f \times P \times C \]

La matriz de riesgo es una representación de todas las combinaciones de los niveles de f, P y C, y del nivel resultante de riesgo. El nivel de riesgo (R) se obtiene combinando los diferentes niveles de las variables independientes, es decir la frecuencia del suceso iniciador (f), la probabilidad de fallo de las defensas previstas (P) y la severidad de las consecuencias (C).

TABLA A6.1: MATRIZ DE RIESGO

<table>
<thead>
<tr>
<th>f_A</th>
<th>P_A</th>
<th>C_MA</th>
<th>R_MA</th>
<th>f_A</th>
<th>P_A</th>
<th>C_MA</th>
<th>R_MA</th>
<th>f_A</th>
<th>P_A</th>
<th>C_B</th>
<th>R_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_M</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_A</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_B</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_A</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_MB</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_A</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_A</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_A</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_M</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_M</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_M</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_B</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_M</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_MB</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_M</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_M</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_A</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_B</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_M</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_B</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_B</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_B</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_MB</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_B</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_B</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_A</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_A</td>
<td>P_MB</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_M</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_M</td>
<td>P_MB</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_B</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_B</td>
<td>P_MB</td>
<td>C_B</td>
<td>R_M</td>
</tr>
<tr>
<td>f_MB</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_MB</td>
<td>C_MA</td>
<td>R_MA</td>
<td>f_MB</td>
<td>P_MB</td>
<td>C_B</td>
<td>R_M</td>
</tr>
</tbody>
</table>

45
Los cuatro niveles de riesgo definidos en este estudio son:

R_{MA}: Riesgo posiblemente “muy alto”.

R_A: Riesgo posiblemente “alto”.

R_M: Riesgo “medio”.

R_B: Riesgo “bajo”.

A.6.2.1 Criterio para elaborar el listado de sucesos iniciadores

El método contiene los listados de sucesos iniciadores de un servicio hipotético de radioterapia basados en los resultados de FMEA realizados a las unidades de terapia de haces externos de 60Co o de acelerador lineal y de utilización del método “¿Qué pasaría si...?” aplicado a la braquiterapia. En todos los casos, los listados genéricos que se elaboraron, fueron complementados con la información siguiente:

- Sucesos iniciadores ocurridos en otras instalaciones.
- Experiencia de los expertos participantes sobre sucesos ocurridos en los países participantes aun cuando dichos sucesos no hayan acabado en accidente, gracias a la actuación de los dispositivos y medidas de seguridad.

A.6.2.2 Criterio para asignar niveles de frecuencia a los sucesos iniciadores

En la metodología aplicada, los valores de frecuencia del suceso iniciador se clasifican desde muy baja hasta alta del siguiente modo:

- Frecuencia Alta (f_A): El suceso ocurre frecuentemente.
- Frecuencia Media (f_M): El suceso ocurre ocasionalmente.
- Frecuencia Baja (f_B): Es poco usual o raro que ocurra el suceso iniciador aunque se presupone que ha ocurrido.
- Frecuencia Muy Baja (f_{MB}): Es muy raro que ocurra el suceso iniciador. No se tiene conocimiento de que haya ocurrido, pero se considera remotamente posible.

A.6.2.3 Criterio para asignar los niveles de las consecuencias

Los criterios para establecer los niveles de consecuencias para los pacientes se han definido basados en la magnitud de las desviaciones de dosis y en las manifestaciones clínicas esperadas en cada caso. Para asignar los niveles de consecuencias (C) se parte de suponer que ya ha ocurrido el suceso iniciador y coincidentemente han fallado todas las barreras. Los sucesos iniciadores identificados pueden tener consecuencias para trabajadores, pacientes y público, aunque con diferente impacto en el caso de los pacientes, ya que éstos se encuentran siempre en el haz de radiación y las fuentes de braquiterapia se encuentran directamente en contacto con los mismos. Por esto se definen dos escalas de consecuencias diferentes, una para los pacientes y otra para trabajadores y público.
Consecuencias para los pacientes

1- **Muy altas, catastróficas o muy graves** (CMA): Ocasionan muertes o daños limitantes a varios pacientes. Se asume que la magnitud de los errores de dosis son superiores al 25% respecto a la dosis prescrita. Pueden ser por subdosis o por sobredosis.

2- **Altas o Graves** (CA): Ocasionan la muerte o daños limitantes a un solo paciente, afectando a todo o gran parte del tratamiento. Se incluyen también en este nivel las exposiciones que afectan a múltiples pacientes cuyos errores de dosis están entre el 10 y el 25% respecto a la dosis prescrita (incluyendo el 25%).

3- **Medias o moderadas** (CM): Clínicamente no ponen en riesgo la vida del paciente, son exposiciones que afectan a un paciente en una sesión de tratamiento.

4- **Bajas** (CB): Disminución de la defensa en profundidad. No provocan desviaciones de dosis.

Consecuencias para los trabajadores y público

1- **Muy altas, catastróficas o muy graves** (CMA): Son aquéllas que provocan efectos deterministas severos, siendo mortales o causantes de un daño permanente que reduce la calidad de vida de las personas afectadas.

2- **Altas o Graves** (CA): Son aquéllas que provocan efectos deterministas, pero que no representan un peligro para la vida y no producen daños permanentes a la calidad de vida.

3- **Medias o moderadas** (CM): Son aquéllas que provocan exposiciones anómalas (o no previstas como normales, es decir, superan las restricciones de dosis o el límite de dosis establecidos en las regulaciones) que están por debajo de los umbrales de los efectos deterministas. Sólo representan un aumento de la probabilidad de ocurrencia de efectos estocásticos.

4- **Bajas** (CB): No se producen efectos sobre los trabajadores y público pero se degradan las medidas de seguridad.

Criterio para asignar la probabilidad de fallo cuando hay varias barreras

El análisis de las defensas existentes en el servicio de radioterapia consiste en identificar qué reductores de frecuencia del suceso iniciador, barreras directas y reductores de consecuencias existen para prevenir, controlar y mitigar cada secuencia accidental analizada. En el método de la matriz de riesgo se asigna un nivel a la probabilidad de fallo del conjunto de barreras directas, que sirven para detectar un determinado suceso iniciador e impedir que ocurra el accidente. En un primer cribado la probabilidad de fallo de las barreras se define a partir de los siguientes criterios:

Alta (P_A): No hay ninguna barrera de seguridad.

Media (P_M): Hay una o dos barreras de seguridad.

Baja (P_B): Hay tres barreras de seguridad.

Muy Baja (P_{MB}): Hay cuatro o más barreras de seguridad. Existe suficiente defensa en profundidad.
En un segundo cribado, el análisis de la probabilidad de fallo también tiene en cuenta criterios para discernir si el conjunto de barreras es suficientemente robusto.

Aceptarabilidad del riesgo

La aceptabilidad del riesgo se analiza a partir de los criterios de la Tabla A6.2

TABLA A6.2. CRITERIOS DE ACEPTABILIDAD DEL RIESGO Y ACCIONES CORRECTORAS

<table>
<thead>
<tr>
<th>Intervalo de Riesgo</th>
<th>Tolerabilidad del Riesgo</th>
<th>Acciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{MA}</td>
<td>Inaceptable</td>
<td>Se requiere paralizar la práctica y que se tomen las medidas necesarias para reducir el riesgo antes del reinicio de los trabajos.</td>
</tr>
<tr>
<td>R_A</td>
<td>Inaceptable si las consecuencias son altas o muy altas.</td>
<td>Se requieren medidas inmediatas para reducir el riesgo o tendrá que suspenderse la práctica.</td>
</tr>
<tr>
<td></td>
<td>Inaceptable, tolerable temporalmente bajo determinadas condiciones si las consecuencias son medias o bajas</td>
<td>Se requieren medidas para reducir el riesgo en un plazo apropiado de tiempo.</td>
</tr>
<tr>
<td>R_M</td>
<td>Tolerable según análisis costo/beneficio</td>
<td>Deben introducirse las mejoras o medidas que reduzcan el riesgo lo más bajo posible considerando criterios de costo/beneficio.</td>
</tr>
<tr>
<td>R_B</td>
<td>Despreciable</td>
<td>No se requerirán acciones o medidas adicionales de seguridad.</td>
</tr>
</tbody>
</table>

A6.3. Ejemplo de aplicación de matriz de riesgo.

La Tabla A6.3 muestra un ejemplo de aplicación del método de matrices de riesgo.

A6.4. Referencias.

<table>
<thead>
<tr>
<th>No</th>
<th>Denominación del Suceso Iniciador</th>
<th>f</th>
<th>C</th>
<th>Barreras de Seguridad</th>
<th>P</th>
<th>Riesgo</th>
<th>Reductores de la frecuencia</th>
<th>Reductores de consecuencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cometer un error en el factor de calibración del equipo dosimétrico (cámara de ionización y electrómetro) que conduce a determinar erróneamente la relación dosis-unidades de monitor</td>
<td>Muy Baja (f_{MB})</td>
<td>Muy Altas (C_{MA})</td>
<td>Dos calibraciones independientes del haz, por personas diferentes y equipos dosimétricos distintos.</td>
<td>Baja (P_{B})</td>
<td>R_{M}</td>
<td>Calibración del dosímetro clínico en un Laboratorio Secundario de Calibración acreditado.</td>
<td>Auditoría Postal con dosímetros TLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dosimetría en vivo en la sesión inicial del tratamiento, para verificar la correspondencia de las dosis administradas con las planificadas, lo que permite detectar errores en la administración de dosis</td>
<td></td>
<td></td>
<td>Sistema de QA del laboratorio secundario de calibración.</td>
<td>Posicionado diario del paciente, en el cual los técnicos de radioterapia pueden detectar errores de geometría o de dosis por signos visuales (coloración de la piel, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capacitación del Físico, que incluya el proceso completo de calibración, los errores que se pueden cometer con los</td>
<td>Revisión médica semanal del paciente que puede detectar errores en la administración del tratamiento, o en las etapas previas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Auditoría anual externa. Prueba de control de tasa de dosis de referencia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dosimetría en vivo semanal,</td>
</tr>
<tr>
<td>No</td>
<td>Denominación del Suceso Iniciador</td>
<td>C</td>
<td>Barreras de Seguridad</td>
<td>P</td>
<td>Riesgo</td>
<td>Reductores de la frecuencia</td>
<td>Reductores de consecuencias</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Cometer un error al utilizar el certificado de calibración, por ejemplo: confusión de unidades mGy-cGy, lectura del coeficiente de calibración, confusión de Nk con ND,w, Po y To</td>
<td>Baja (f_B)</td>
<td>Muy Altas (C_{MA})</td>
<td>Dos calibraciones independientes del haz, por personas diferentes y equipos dosimétricos distintos. Comparación de las dosis en casos de prueba, entre las calculadas por el TPS y mediciones directas, durante la puesta en servicio del TPS</td>
<td>Muy Baja (P_{MB})</td>
<td>Certificado de Capacitación como Físico Médico en Radioterapia que incluye el ejercicio práctico Calibración de haces</td>
<td>Auditoría Postal con dosímetros TLD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Posicionado diario del paciente, en el cual los técnicos de radioterapia pueden detectar errores de geometría o de dosis por signos visuales (coloración de la piel, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revisión médica semanal del paciente que puede detectar errores en la administración del tratamiento, o en las etapas previas</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Denominación del Suceso Iniciador</td>
<td>f</td>
<td>C</td>
<td>Barreras de Seguridad</td>
<td>P</td>
<td>Riesgo</td>
<td>Reductores de la frecuencia</td>
<td>Reductores de consecuencias</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
<td>--------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>en la administración de dosis</td>
<td></td>
<td></td>
<td></td>
<td>Auditoria anual externa. Prueba de control de tasa de dosis de referencia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dosimetría en vivo semanal, por la que se pueden detectar errores en la dosis administrada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pruebas mensuales y anuales de constancia de la dosis de referencia y evaluación de la calidad del haz, en el marco de los controles de QA.</td>
</tr>
</tbody>
</table>
APÉNDICE 7. EJEMPLO DE FMEA.

A7.1. Introducción.

En este apéndice se describe el Análisis de Modos de Fallo y efectos (FMEA), que ha sido uno de los métodos más utilizados para el análisis de riesgo en los servicios de radioterapia.

A7.2. Descripción del Método.

El Análisis de Modos de Fallos y Efectos (FMEA siglas en inglés) es un procedimiento estándar de evaluación para, en forma sistemática, identificar los fallos potenciales de un equipo, sistema o proceso y analizar los efectos resultantes con respecto a un estado no deseado determinado. Es un método inductivo de análisis, basado en la pregunta ¿Qué sucede si...?; y considera un fallo dentro del equipo, sistema o proceso a un tiempo. Los resultados de un FMEA son usualmente listados en forma de tabla, elemento por elemento. Generalmente, el FMEA es usado como una técnica cualitativa, aunque puede ser extendida para dar un rango de prioridad basado en la severidad del fallo y su probabilidad de ocurrencia.

Fue inicialmente utilizado para evaluar los modos de fallos de equipos y materiales de sistemas tecnológicos diferentes y posteriormente también ha sido utilizado para el estudio de software, del comportamiento humano (FMEAH) y aplicaciones médicas (HFMEA).

El método de análisis de un FMEA se basa en los siguientes pasos:

- Efectuar un examen para la identificación de todos los posibles modos de fallos funcionales o errores humanos para cada uno de los componentes o tareas respectivamente.
- Cada vez que es identificado un modo de fallo o error humano probable, se analizan sus causas, consecuencias, defensas previstas y posibles acciones correctoras, llevándose un registro ordenado de todo ello.
- Sucesivamente se repite el mismo análisis para cada equipo o tarea que conforman el sistema o proceso respectivamente que está siendo evaluado.
- Cuando se concluye un sistema o proceso, se comienza otro y así sucesivamente hasta abarcar todo el alcance del estudio.

Para asegurar una revisión completa y eficiente de la instalación o sistemas se documentan los resultados del FMEA en un formato tabular. Las descripciones de los sistemas y etapas y tareas constituyen la base para determinar los modos de fallos y errores humanos que pueden conllevar a un efecto indeseado.

A continuación se presenta el formato utilizado para la realización del FMEA:

<table>
<thead>
<tr>
<th>Unidad:</th>
<th>Fecha:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa (o proceso):</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Equipo/ Tarea</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
</tr>
</tbody>
</table>

dónde:

- Unidad: Indica el nombre del servicio de radioterapia.
- Etapa (o Proceso): Indica el nombre de la etapa, paso, actividad o proceso que se analiza en la tabla.
- Fecha: Indica la fecha en que se realizó la sesión de FMEA.
- N°.: Indica el número consecutivo del equipo o tarea que se analiza.
- Equipo/ Tarea: Indica el nombre del equipo o tarea que se analiza.
- Modo de Fallo/ Error Humano: Forma en que puede fallar la función de un componente particular, pudiendo haber varios modos de fallo o errores humanos para un mismo componente o tarea.
- Causas del Fallo: Indica las posibles causas que pueden provocar el modo de fallo correspondiente.
- Efectos: Se indican los efectos de exposiciones potenciales.
- Comentarios: Indica cualquier anotación o precisión que pueda aclarar alguno de los aspectos indicados en las columnas anteriores sobre el modo de fallo que está siendo analizado.

A la hora de seleccionar los modos de fallo de equipo se deben analizar las partes o sistemas fundamentales y sus modos de fallos potenciales. A continuación se muestran algunos ejemplos de modo de fallos de un acelerador lineal de usos médicos:

- Fallo en el control dosimétrico del haz: Pueden ocurrir fallos en ambos canales redundantes de control dosimétrico o fallos por interrupción del potencial de polarización de las cámaras de ionización.
- Delimitación incorrecta del campo por fallo del sistema de movimiento de los diafragmas o colimador secundario.
- Posición errónea de las láminas del colimador multiláminas. Fallos del sistema de control de las láminas.
- Fallo en la atenuación del haz como corresponde a la cuña por posición incorrecta del filtro cuña.
- Posición incorrecta del filtro secundario según el modo de tratamiento y la energía seleccionada.
- Fallos del colimador primario: Pueden ocurrir por rotación incorrecta del colimador primario respecto a una de las dos posiciones que corresponda según el tipo de irradiación y la energía y por movimiento del colimador primario durante la irradiación debido a fallos del freno que hace que el colimador pueda moverse y apartarse de la posición requerida.
- Posición incorrecta del blanco: Fallos del sistema de cambio de blanco pueden hacer que la posición del blanco en el que han de incidir los electrones no coincida con la prevista.
Discrepancia entre la lámina dispersora de los electrones y la que corresponde a la energía de los mismos: Fallos del posicionado de las láminas dispersoras de electrones puede hacer que la lámina posicionada frente al haz no concuerde con la energía de los electrones.

Deficiente deflexión del haz: Fallos de las bobinas de deflexión o de la alimentación de dichas bobinas pueden hacer que el haz no tenga la trayectoria prevista hasta su incidencia sobre el blanco o sobre la lámina dispersora.

Desviaciones radiales o transversales del haz de radiación en el extremo del cañón: Puede ocurrir por fallos de las bobinas pueden hacer que éstas no puedan corregir las desviaciones transversales o radiales, o por fallos de las bobinas que impidan compensar las desviaciones transversales o radiales del haz al modificar el ángulo del gantry.

Desenfoque del haz de radiación: Fallos de las bobinas de enfoque o de sus sistema de alimentación (cortocircuitos internos u otras causas)

Variación en la tasa de dosis por una intensidad de corriente de calentamiento de filamento diferente de la prevista: Fallos en el control o alimentación del cañón de electrones

Discrepancias de la energía real del haz con la seleccionada: Puede ser por fallos en el sistema de modulación y alta tensión; fallos en el sistema de radiofrecuencia; fallos del sistema de alimentación de alta tensión; fallos en la red de formación de pulsos.

Posición del gantry diferente de la prevista: Fallos en el sistema de alimentación y control del movimiento del gantry

Desplazamiento de la mesa de tratamiento durante la irradiación: Fallos en los sistemas de desplazamiento lateral, longitudinal, vertical o de rotación isocéntrica de la mesa de tratamiento.

Fallos que conducen a errores de posicionado del paciente: Desajuste de la retícula o del indicador óptico de distancia (telémetro óptico). Desajuste de los indicadores de luz tipo láser.

En relación a los modos de fallo del software del TPS, pueden ocurrir fallos internos en el software, por ejemplo en el módulo de registro de cada nuevo paciente y actualización de sus datos de identificación en el TPS, o en el módulo en el que se registran las unidades de tratamiento disponibles, o en el módulo de cálculo de distribución de dosis o en el de histogramas de dosis y volúmenes. Las causas son variadas e incluyen las debidas al diseño del software, su vulnerabilidad a virus informáticos o por errores de programación, o utilización del software en condiciones no previstas para la operación normal, etc.

Además de los modos de fallos de equipo y software comentados en los párrafos anteriores, deben analizarse los posibles errores humanos relacionados con el uso de los equipos, así como los errores propios de cada tarea y etapa del proceso de tratamiento. Los errores humanos se pueden clasificar según los siguientes criterios:

- **ERROR DE OMISIÓN**: No realizar una acción o tarea requerida. Pueden ser:
 - Omisión de una tarea completa
 - Omisión de un paso de la tarea
• ERROR DE COMISIÓN: Realización incorrecta de una tarea o realizar una tarea que se no se requiere y que puede provocar una consecuencia indeseada. Pueden ser:
 – Errores de selección: Emisión de una información o comando erróneo, oral o escrito; Selección de un control erróneo; Posicionamiento erróneo de un control.
 – Errores cualitativos: Por defecto, por exceso un poco más explicación?
 – Errores de secuencia: Se altera el orden de un secuencia dada de operaciones
 – Errores de tiempo: Demasiado tarde, Demasiado temprano

• ERROR COGNITIVO: Se producen durante los procesos de diagnosis y toma de decisiones que tienen lugar en el ser humano al recibir una señal que requiere una respuesta.

• ERROR MANUAL: Se producen en la fase post-diagnosis, durante la ejecución física de la respuesta:
 – Errores de selección: Emisión de una información o comando erróneo, oral o escrito; Selección de un control erróneo; Posicionamiento erróneo de un control.
 – Errores cualitativos: Por defecto, por exceso
 – Errores de secuencia: Se altera el orden de un secuencia dada de operaciones
 – Errores de tiempo: Demasiado tarde, Demasiado temprano

• ERROR NO INTENCIONAL: Se dividen en:
 – Lapsos: Errores que se producen cuando se sabe qué hacer y sin desearlo se realiza una acción incorrectamente. A menudo son producidos por falta de atención
 – Equivocaciones: Errores que se producen cuando se decide realizar una acción que es apropiada para otra situación diferente de la que está ocurriendo en realidad

• VIOLACIONES: Se refiere a las decisiones deliberadas (por cualquier razón) de ignorar las reglas, códigos de seguridad establecidos

A7.3. Ejemplo de aplicación de FMEA.

La Tabla A7.2 muestra una sección de un ejemplo de aplicación del FMEA-Humano.

A7.4. Referencias.

[7] CANTONE, MARIE CLAIRE; CATTANI, FEDERICA; CIOCCA, MARIO; MOLINELLI, SILVIA; PEDROLI, GUIDO; VERONESE, IVAN1; VITOLEO, VIVIANA; ORECCHIA, Roberto A study for the application of prospective approaches for safety assessment in new radiotherapy techniques. EUROPEAN IRPA CONGRESS, Helsinki, Finland, (2010).

TABLA A7.2 EJEMPLO DE APLICACIÓN DEL FMEA -Humano

Unidad: Proceso de Tratamiento de Radioterapia con Acelerador Lineal de Usos Médicos (LINAC).

Fecha: Julio 2006

<table>
<thead>
<tr>
<th>No</th>
<th>Equipo/ Tarea</th>
<th>Modo de Fallo/ Error Humano</th>
<th>Causas</th>
<th>Efectos</th>
<th>Barreras de Seguridad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/D</td>
<td>No Desarrollado</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>
| 2 3 | Selección del Paciente en el TPS | Seleccionar a un paciente erróneo en el TPS (diferente al que se intenta planificar según Hoja de Tratamiento) | • Lapsus
• Similitud de nombres del paciente
• Interrupciones del trabajo | Exposición Accidental de 1 paciente | • Evaluación del Plan de Tratamiento por el oncólogo
• Revisión independiente por otro FM
• Primera sesión del tratamiento | • Deben coincidir el nombre del paciente y la misma patología |
<table>
<thead>
<tr>
<th>N°</th>
<th>Equipos/ Tarea</th>
<th>Modo de Fallo/ Error Humano</th>
<th>Causas</th>
<th>Efectos</th>
<th>Barreras de Seguridad</th>
<th>Comentarios</th>
</tr>
</thead>
</table>
| 2 | Definición y conformación del PTV | Omitir definir y conformar un campo que se requiere para la localización planificada | • Lapsus | Exposición Accidental de 1 paciente | • Evaluación del Plan de Tratamiento por el oncólogo | • Revisión independiente por otro FM
| | | | • Insuficiente experiencia y capacitación del Físico Médico (FM) |
| | | | pag73 |
| 4 | Definir una dirección errónea del (los) campo(s) | | • Lapsus | Exposición Accidental de 1 paciente | • Evaluación del Plan de Tratamiento por el oncólogo | • Revisión independiente por otro FM
| | | | • Insuficiente experiencia y capacitación del FM |
| | | | |

Fecha: Julio 2006
<table>
<thead>
<tr>
<th>N°</th>
<th>Equipo/ Tarea</th>
<th>Modo de Fallo/ Error Humano</th>
<th>Causas</th>
<th>Efectos</th>
<th>Barreras de Seguridad</th>
<th>Comentarios</th>
</tr>
</thead>
</table>
| 1 | | Definir una dimensión errónea del (los) campo(s) (delimitación mayor/menor que la requerida) | • Lapsus
• Insuficiente experiencia y capacitación del FM | Exposición Accidental de 1 paciente | Evaluación del Plan de Tratamiento por el oncólogo
• Revisión independiente por otro FM
• Primera sesión del tratamiento | • Durante la conformación del campos con el MLC en el TPS se puede reducir el impacto de delimitar un campo mayor que el necesario |
| 2 | | Conformar erróneamente el (los) campo(s) (PTV mayor/menor que el necesario) | • Lapsus
• Insuficiente experiencia y capacitación del FM | Exposición Accidental de 1 paciente | Evaluación del Plan de Tratamiento por el oncólogo
• Revisión independiente por otro FM
• Primera sesión del tratamiento | |
<p>| 3 | | Omitir la consideración de bolus en PTV | N/D | N/D | N/D | N/D |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Equipo/ Tarea</th>
<th>Modo de Fallo/ Error Humano</th>
<th>Causas</th>
<th>Efectos</th>
<th>Barreras de Seguridad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Considerar un bolus erróneo en el PTV</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omitir la consideración de compensador</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerar un compensador erróneo</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omitir la consideración de bloqueador</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Considerar un bloqueador erróneo</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omitir la consideración de cuñas</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consideración errónea de posición de cuñas</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>
Unidad: Proceso de Tratamiento de Radioterapia con Acelerador Lineal de Usos Médicos (LINAC).

Fecha: Julio 2006

<table>
<thead>
<tr>
<th>No</th>
<th>Equipo/ Tarea</th>
<th>Modo de Fallo/ Error Humano</th>
<th>Causas</th>
<th>Efectos</th>
<th>Barreras de Seguridad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>5</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>
APÉNDICE 8. EJEMPLO DE LA METODOLOGÍA DE RIESGO HAZOP.

A8.1. Introducción.

El Análisis de Peligros y Operabilidad (Hazard and Operability) es un método cualitativo ampliamente utilizado y reconocido en la industria de procesos. Se caracteriza por requerir dominio de la metodología, además es trabajoso e implica un alto consumo de tiempo. Probablemente por ello no ha tenido una amplia utilización en los análisis de riesgos de servicios de radioterapia.

Se realiza en reuniones de grupo, basada en el principio de que diferentes expertos con experiencias diferentes pueden interactuar en un objetivo de modo sistemático e identificar más problemas cuando trabajan juntos que cuando trabajan separadamente y combinan sus resultados.

A8.2. Descripción del método.

El estudio HAZOP se enfoca sobre puntos específicos del proceso u operación llamados nodos del estudio, secciones del proceso o pasos de operación. Se examinan para cada sección las desviaciones del proceso potencialmente peligrosas derivadas de un conjunto de palabras guías establecidas. El objetivo primario de las palabras guías es asegurar que sean evaluadas todas las desviaciones de parámetros del proceso.

Las palabras guías combinadas con los parámetros del proceso son las que sugieren las posibles desviaciones, mientras que las variables del proceso reflejan tanto aspectos del diseño como operacionales o del proceso. En la tabla A9.1 se listan una serie de palabras guías comúnmente usadas en un análisis HAZOP.

<table>
<thead>
<tr>
<th>Palabra Guía</th>
<th>Significado</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO: (no)</td>
<td>Negación de la intención del diseño.</td>
<td>No se logran, ni siquiera en parte, las finalidades, pero no sucede nada más.</td>
</tr>
<tr>
<td>MAS: (more)</td>
<td>Incremento cuantitativo</td>
<td>Estas palabras se refieren a las cantidades. Estas palabras guías pueden sustituirse por “alto” y “bajo” para determinadas variables del proceso como pueden ser “nivel”, “temperatura”, “presión”.</td>
</tr>
<tr>
<td>MENOS: (less)</td>
<td>Disminución cuantitativa</td>
<td></td>
</tr>
<tr>
<td>PARTE DE: (part of)</td>
<td>Disminución cualitativa</td>
<td>Solo se alcanza alguna de las finalidades, otras no.</td>
</tr>
<tr>
<td>ADEMÁS DE: (as well as)</td>
<td>Incremento cualitativo</td>
<td>Se logran todas las finalidades del diseño y ocurre algo más.</td>
</tr>
<tr>
<td>INVERSIÓN: (reverse)</td>
<td>Lógica opuesta al sentido.</td>
<td>Ejemplo la inversión de la intensidad de corriente eléctrica o del flujo.</td>
</tr>
<tr>
<td>DISTINTO DE: (other than)</td>
<td>Completa sustitución</td>
<td>No se consigue ni siquiera en parte la finalidad original. Sucede algo totalmente diferente.</td>
</tr>
</tbody>
</table>
En la Tabla A8.2 se ejemplifican algunas variables de proceso.

TABLA A8.2. EJEMPLO DE VARIABLES DE PROCESO

<table>
<thead>
<tr>
<th>Ejemplo de Nodo, Sección del Proceso (dependiendo del alcance del estudio cada uno de estos nodos podría dividirse en subnodos)</th>
<th>Ejemplo de variable de proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acelerador Lineal</td>
<td>Fotones, Electrones, Energía, Deflexión, Posición del blanco, Colimación del haz, Rotación del colimador, Homogeneidad, Uniformidad del haz, Estabilidad del haz, Simetría del haz, Planitud del haz, Tamaño del campo, Etc.</td>
</tr>
<tr>
<td>Sistema de posicionamiento</td>
<td>Luz de campo, Distancia, Posición del isocentro, Etc.</td>
</tr>
<tr>
<td>Gantry</td>
<td>Posición, Ángulo, Freno, Etc.</td>
</tr>
<tr>
<td>Mesa de tratamiento</td>
<td>Movimiento vertical, Movimiento lateral, Movimiento isocéntrico, Altura</td>
</tr>
<tr>
<td>Prescripción clínica de tratamiento</td>
<td>Identificación del paciente, Intención del tratamiento, Definición del órgano a irradiar, Definición de los órganos de riesgo, Dosis total del tratamiento, Dosis diaria del tratamiento, Fraccionamiento de dosis, Restricción de dosis a Órganos de Riesgo, Aditamentos especiales, Etc.</td>
</tr>
<tr>
<td>Adquisición de Datos Anatómicos del Paciente</td>
<td>cortes del TAC, Marcas de referencia, Archivos de imagen TAC (en formato DICOM), Características del posicionamiento</td>
</tr>
<tr>
<td>Ejemplo de Nodo, Sección del Proceso (dependiendo del alcance del estudio cada uno de estos nodos podría dividirse en subnodos)</td>
<td>Ejemplo de variable de proceso (inmovilizadores, posición de los brazos, Etc.)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Delineación de volúmenes)</td>
<td>Volumen Blanco macroscópico (GTV)</td>
</tr>
<tr>
<td></td>
<td>Volumen Blanco clínico (CTV)</td>
</tr>
<tr>
<td></td>
<td>Delineación de órganos críticos</td>
</tr>
<tr>
<td></td>
<td>Indicar volúmenes secundarios en la Hoja de Tratamiento</td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
</tr>
<tr>
<td>Planificación dosimétrica del tratamiento</td>
<td>…</td>
</tr>
<tr>
<td>Sesión Inicial del tratamiento</td>
<td>…</td>
</tr>
<tr>
<td>Posicionamiento del paciente para el tratamiento diario</td>
<td>…</td>
</tr>
<tr>
<td>Administración del tratamiento diario</td>
<td>…</td>
</tr>
<tr>
<td>Evaluación Médica del paciente</td>
<td>…</td>
</tr>
<tr>
<td>Aceptación y puesta en servicio</td>
<td>…</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>…</td>
</tr>
<tr>
<td>Tomógrafo computarizado</td>
<td>…</td>
</tr>
<tr>
<td>Sistema de planificación del tratamiento</td>
<td>…</td>
</tr>
<tr>
<td>Dispositivo de Imagen Portal</td>
<td>…</td>
</tr>
<tr>
<td>Sistema de dosimetría en vivo</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

La Figura A8.1 muestra el diagrama de flujo de un Estudio HAZOP
Figura. A8.1 Diagrama de Flujo para realizar un Estudio HAZOP.

En la Tabla A8.3 se ejemplifica la obtención de desviaciones para el nodo de “Delineación de Volúmenes” y la variable de proceso Indicar volúmenes secundarios.

TABLA A8.3 EJEMPLO DE DESVIACIONES DE PROCESO.

<table>
<thead>
<tr>
<th>Nodo: Delineación de Volúmenes</th>
<th>Variable de proceso</th>
<th>Palabra Guía</th>
<th>Desviación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicar volúmenes secundarios</td>
<td>NO</td>
<td>No</td>
<td>No indicar en la hoja de tratamiento los volúmenes secundarios</td>
</tr>
<tr>
<td></td>
<td>Menos</td>
<td>Omitir</td>
<td>Omitir indicar en la hoja de tratamiento algún volumen secundario</td>
</tr>
<tr>
<td></td>
<td>En vez de</td>
<td>Indicar</td>
<td>Indicar en la hoja de tratamiento un tejido sano en vez de un volumen secundario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

A8.3. Ejemplo de aplicación de HAZOP.

Normalmente, los resultados se recogen en un formato tabular para cada nodo de estudio, sección del proceso, o paso de operación descrito, según muestra en la tabla A8.3.

Tabla A8.3: Formato Típico para una hoja de trabajo de Análisis HAZOP
<table>
<thead>
<tr>
<th>No.</th>
<th>Desviación</th>
<th>Causas</th>
<th>Consecuencias</th>
<th>Barreras</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
| 18 | No indicar en la hoja de tratamiento los volúmenes secundarios | -Lapsus
-Alta carga asistencial
-Mala calidad de la imagen TAC
-Mala calidad de la hoja de tratamiento
-Deficiencias de QA en el protocolo para la delineación de volúmenes | No se irradian los volúmenes secundarios de un paciente | Evaluación conjunta del plan dosimétrico por parte del radiooncólogo y del físico médico
Colocación e inmovilización del paciente en la posición de tratamiento para la sesión inicial, en presencia del radiooncólogo, el físico médico los técnicos de radioterapia
En la Evaluación del Paciente durante el Tratamiento que se realiza con una frecuencia semanal el Oncólogo-Radioterapeuta puede detectar este error y enmendarlo prescribiendo el tratamiento del volumen secundario no tratado. |
| 19 | … | … | … | … |

A8.4. Referencias.

APÉNDICE 9. EJEMPLO DEL MÉTODO DEL NÚMERO DE PRIORIDAD DEL RIESGO (RPN).

A9.1. Introducción.

El método del número de prioridad del riesgo (RPN) es una herramienta para determinar el riesgo asociado con problemas potenciales identificados durante un FMEA, aunque también puede aplicarse a otros métodos de identificación de peligros como el HAZOP o el que pasa si…?.

A9.2. Descripción del método.

En este método se utilizan el juicio ingenieril del equipo de analistas de riesgos para clasificar cada modo de fallo o desviación según las siguientes variables

- **Severidad (S)**, en la cual cada efecto o consecuencia recibe un número de severidad que van desde el 1 al 10, asignando 1 a 3 cuando no hay peligro o es poco apreciable, 4 a 6 cuando el peligro es moderado, 7 al 8 cuando el peligro es alto o significativo y 9 al 10 cuando el peligro es muy alto y puede conducir a la muerte del paciente.

- **Ocurrencia o Incidencia (O)**, donde se determina la frecuencia de la causa del fallo o de la desviación, según una escala del 1 al 10, asignando un número menor que 3 cuando la frecuencia es inferior o igual a una vez al año, entre 4 y 7 cuando la frecuencia es mayor que una vez al año hasta 1 vez a la semana moderada, de 8 a 9 cuando la frecuencia del error está entre una vez por semana a una vez por día y 10 cuando la frecuencia del error es mayor que una vez al día.

- **Detección (D)**, que representa la probabilidad con que el problema pueda ser detectado antes de que ocurra la consecuencia prevista según una escala del 1 al 10, donde 1 significa que es muy poco probable que ocurra la consecuencia si el modo de fallo tiene lugar debido a que es muy fácil de detectar el error y 10 cuando con los medios disponibles es prácticamente imposible de detectar el error y evitar que la consecuencia una vez que ocurre el fallo.

Los números de prioridad del riesgo se calculan entonces multiplicando estas tres variables:

$$RPN = S \times O \times D$$

Una vez calculado el RPN se pueden determinar los sucesos que deben ser de mayor preocupación. Los modos de fallo que tengan un mayor número de prioridad del riesgo deben ser los que reciban la mayor prioridad para desarrollar acciones correctivas.

En la siguiente tabla se muestra un criterio seguido para determinar, combinando los valores de las variables del RPN, si se requieren o no acciones correctivas, donde las letras y números de la tabla indican si se requieren o no acciones correctivas siguiendo los siguientes criterios:
“C”: Cuando la severidad de las consecuencias es 9 o 10, se asume que el riesgo nunca será despreciable y que se requiere una mejora continua o acciones correctivas.

“N”: En este caso no se requieren acciones correctivas debido a que el riesgo es poco significativo.

“#”: Se requieren acciones correctivas si la variable de Detección tiene un número mayor o igual que el que se muestra en la tabla. Por ejemplo, si S=6 y O=5, entonces si la variable D≥4 se requerirán acciones correctivas

TABLA A9.1 ACEPTABILIDAD DEL RIESGO SEGÚN EL MÉTODO RPN

<table>
<thead>
<tr>
<th>O/S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>10</td>
<td>8</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>N</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>N</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>N</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>N</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

A9.3. Ejemplo de aplicación.

La Tabla A9.2 muestra un ejemplo de aplicación del RPN al tratamiento con radioterapia.

TABLA A9.2 EJEMPLO DE APLICACIÓN DE RPN

<table>
<thead>
<tr>
<th>Etapa del Proceso</th>
<th>Desviación</th>
<th>Efectos</th>
<th>Defensas y Método de Detección</th>
<th>S</th>
<th>O</th>
<th>D</th>
<th>RPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puesta en servicio del LINAC</td>
<td>Cometer un error en la determinación del coeficiente de calibración de las cámaras monitoras que implica la determinación errónea de la relación dosis-unidades de monitor</td>
<td>Exposición Accidental de múltiples pacientes / Sobre exposición de pacientes</td>
<td>Medición inmediata para la comprobación del ajuste realizado por el propio físico médico</td>
<td>Dos calibraciones independientes del haz, por personas diferentes y equipos dosimétricos distintos.</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Etapa del Proceso</td>
<td>Desviación</td>
<td>Efectos</td>
<td>Defensas y Método de Detección</td>
<td>S</td>
<td>O</td>
<td>D</td>
<td>RPN</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Adquisición datos anatómicos del Paciente</td>
<td>Cometer un error por cambio de información en la transferencia de imágenes de la TAC de simulación al TPS</td>
<td>Exposición Accidental de un paciente/ Paciente Erróneo</td>
<td>Dosimetría en vivo en la sesión inicial del tratamiento, para verificar la correspondencia de las dosis administradas con las planificadas, lo que permite detectar errores en la administración de dosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | Procedimiento de QA para verificar la transferencia | 8 | 3 | 3 | 72 |
| | | Delineación de volúmenes y órganos críticos en el sistema de planificación de tratamientos por parte del radiooncólogo, pudiendo detectar errores cometidos en las etapas previas, es decir en la de prescripción del tratamiento o en la toma de datos anatómicos | | | | |
| | | Simulación del tratamiento, tanto si es virtual como real, lo cual permite detectar errores de geometría y posicionamiento del paciente. | | | | |
| | | Colocación e inmovilización | | | | |</p>
<table>
<thead>
<tr>
<th>Etapa del Proceso</th>
<th>Desviación</th>
<th>Efectos</th>
<th>Defensas y Método de Detección</th>
<th>S</th>
<th>O</th>
<th>D</th>
<th>RPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posicionamiento para Tratamiento diario</td>
<td>Cometer errores al ubicar la entrada del haz del campo en tratamientos no isocéntricos (DFS=constante) durante el Posicionamiento para el Tratamiento Diario en una sesión del tratamiento</td>
<td>Incidente recuperable en un paciente</td>
<td>Durante el posicionamiento del paciente se verifica, para cada campo a tratar, la ubicación del PTV mediante un lazo de verificación que comprueba la correspondencia entre la distancia fuente isocentro (DFI) y la distancia fuente-superficie (DFS) con los valores del plan, pudiéndose detectar este error</td>
<td></td>
<td></td>
<td></td>
<td>4 3 5 60</td>
</tr>
</tbody>
</table>

Verificación de la coincidencia entre la luz de campo con las marcas del mismo sobre la piel del paciente.
A9.4. Referencias.

APÉNDICE 10. EJEMPLO DE DIAGRAMAS DE BARRERAS O NUDO DE CORBATA (BOW TIE).

A10.1. Introducción.

Los Diagrama de Barreras (Bow-Tie) ilustran la relación existente entre un evento o suceso tope, las causas (amenazas) que lo desencadenan y las consecuencias asociadas al mismo. Este es un método que cada vez está teniendo mayor aplicación debido a que constituye una herramienta muy útil para la comprensión y comunicación de los riesgos.

A10.2. Explicación del método.

La metodología del Bow-Tie usa una terminología y simbología específicas. Las particularidades de la misma se explican en la Tabla 10.1 y figura A10.1. En los diagramas, el Suceso Tope se ubica en el centro. En la parte izquierda del Bow-Tie se reflejan las causas, conjuntamente con las correspondientes barreras de control (preventivas), mientras que en la parte derecha se reflejan las consecuencias potenciales asociadas a la manifestación del peligro, conjuntamente con las correspondientes barreras de control (mitigadoras).

TABLA 10.1 EXPLICACIÓN DE LA SIMBOLOGÍA DEL BOW-TIE

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Denominación</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTEXTO DEL PELIGRO (HAZARD)</td>
<td>Propiedad intrínseca de un proceso, situación o condición que representa una fuente potencial de daño</td>
</tr>
<tr>
<td></td>
<td>SUÉSTO TOPE (TOP EVENT)</td>
<td>Suceso creíble asociado al contexto del peligro.</td>
</tr>
<tr>
<td></td>
<td>CONSECUENCIA (CONSEQUENCE)</td>
<td>Suceso o cadena de sucesos que se produce como resultado de la aparición del SUÉSTO TOPE.</td>
</tr>
<tr>
<td></td>
<td>AMENAZA (THREAT)</td>
<td>La posible causa directa (fallo de equipo, error humano o suceso externo) que potencialmente ocasionaría el SUÉSTO TOPE.</td>
</tr>
<tr>
<td></td>
<td>BARRERAS PREVENTIVAS (PREVENTIVE BARRIERS)</td>
<td>Medidas de protección dispuestas para impedir que surjan las AMENAZAS que conducen al SUÉSTO TOPE.</td>
</tr>
<tr>
<td></td>
<td>BARRERAS MITIGADORA (MITIGATIVE BARRIERS)</td>
<td>Cualquier medida técnica, operacional u organizativa que evita que el SUÉSTO TOPE produzca las CONSECUENCIAS. Actúan sobre la probabilidad o severidad de la CONSECUENCIA.</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Denominación</td>
<td>Explicación</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FACTORES DE AGRAVAMIENTO (SCALATION FACTORS)</td>
<td>Condición (modo de fallo) que puede anular o reducir la efectividad/fiabilidad una BARRERA PREVENTIVA O MITIGADORA. Estos modos de fallo están asociados por lo general a factores humanos y organizacionales.</td>
<td></td>
</tr>
<tr>
<td>CONTROLES DE LOS FACTORES DE AGRAVAMIENTO (SCALATION FACTOR CONTROLS)</td>
<td>Controles que se establecen para manejar los FACTORES DE AGRAVAMIENTO. Estos controles están asociados generalmente a los elementos del sistema de gestión de la seguridad</td>
<td></td>
</tr>
</tbody>
</table>

Figura A10.1 Representación esquemática del diagrama Bow-Tie

A10.3. Ejemplo de aplicación.

En la figura A10.2 se muestra un ejemplo de diagrama Bow Tie para errores durante la planificación de casos de HDR.

A10.4. Referencias.

Figura A10.2 Diagrama Bow Tie para errores durante la planificación de casos de HDR
APÉNDICE 11. EJEMPLO DE ÁRBOLES DE SUCESOS.

A11.1. Introducción.

El árbol de sucesos es un método inductivo que describe la evolución de un suceso iniciador sobre la base de la respuesta de distintos sistemas o condiciones externas. Partiendo del suceso iniciador y considerando los factores condicionantes involucrados, el árbol describe las secuencias accidentales que conducen a distintos eventos.

A11.2. Descripción de la metodología.

La construcción del árbol comienza por la identificación de las N barreras y condiciones que determinan la evolución del suceso iniciador. Seguidamente se colocan éstos como cabezales en una estructura gráfica y partiendo del iniciador se plantean dos bifurcaciones: en la parte superior se refleja el éxito o la ocurrencia del suceso condicionante y en la parte inferior se representa el fallo o no ocurrencia del mismo, obteniéndose 2^N combinaciones o secuencias teóricas, aunque las dependencias entre los sucesos hacen que la ocurrencia o éxito de uno de ellos pueda eliminar la posibilidad de otros reduciéndose así el número total de secuencias.

Simplificadamente la cuantificación del árbol se puede realizar siguiendo los siguientes criterios:

- El suceso iniciador viene determinado por una frecuencia (f), expresada normalmente en ocasiones por año
- Los N factores condicionantes son sucesos definidos por su probabilidad de ocurrencia: P_i, $i=1,N$.
- Los sucesos complementarios de estos tienen asociados, una probabilidad de $1-P_i$, $i=1,N$.

Si se considera que los factores condicionantes son sucesos independientes, cada una de las secuencias, tiene asociada una frecuencia f_s:

$$f_s = f \prod_{i=1}^{N} p_i \cdot (1 - p_i) \quad n_i = 1, N_j = 1, n_j$$

siendo:

- N_i: el número de sucesos de éxito de la secuencia s.
- N_j: el número de sucesos de fallo de la secuencia s.

De esta forma también se cumple que la suma de las frecuencias de todas las secuencias accidentales es igual a la frecuencia del iniciador:

$$\Sigma f_s = f$$
Otra forma de cuantificar el árbol es aplicando las técnicas del algebra de Boole y la determinación de los conjuntos mínimos de fallo.

A11.3. Ejemplo de aplicación.

En la figura A11.1 se muestra un ejemplo de árbol de sucesos y seguidamente se describen los criterios considerados para su construcción (los datos de probabilidad utilizados son hipotéticos y válidos únicamente desde el punto de vista ilustrativo).

El suceso iniciador tiene lugar cuando el técnico de radioterapia realiza la tomografía de simulación con parámetros geométricos erróneos, ya sea por introducción errónea de datos en la consola del tomógrafo o por no utilizar un protocolo adecuado de simulación que garantice la reproducibilidad del posicionado del paciente durante el tratamiento. Esto se puede deber a diferencias del tomógrafo de simulación respecto al equipo de tratamiento (mesa diferente, ancho limitado, proyección de la luz láser diferente).

La primera barrera que se interpone en la evolución del iniciador es la delineación de volúmenes, donde el Oncólogo Radioterapeuta delinea (pinta) en el Sistema de Planificación de Tratamiento (TPS) volúmenes y órganos críticos (OAR) pudiendo detectar errores de geometría producidos en las etapas precedentes, en este caso relacionados con el uso de parámetros geométricos erróneos durante la realización de la TAC.
Posteriormente, durante la etapa de Planificación Dosimétrica del Tratamiento el Físico-Médico define y conforma el Volumen Blanco de Planificación (PTV) pudiendo detectar errores de geometría producidos en las etapas precedentes.

Otra barrera la constituye la revisión de la imagen portal que se realiza en la sesión inicial del tratamiento, donde el oncólogo-radioterapeuta puede detectar errores de geometría del tratamiento en las etapas o pasos precedentes del proceso.

Asimismo si durante la Administración del Tratamiento Diario se realiza una Verificación con Imagen Portal con una frecuencia semanal, también es posible detectar errores de geometría del tratamiento en las etapas o pasos precedentes del proceso, por lo que el iniciador no evoluciona hacia un accidente y sería un incidente recuperable durante el curso del tratamiento.

Finalmente, durante la revisión médica del paciente que se realiza con una frecuencia semanal el Oncólogo-Radioterapeuta pudiera detectar errores de geometría o de dosis cuando las desviaciones de éstas superan el 10 % de la dosis prescrita.

A11.4. Referencias.

APÉNDICE 12. EJEMPLO DE ÁRBOLES DE FALLOS.

A12.1. Introducción.

El árbol de fallos constituye una herramienta deductiva que permite determinar la expresión de sucesos complejos estudiados en función de los fallos básicos de los elementos que intervienen en él.

A12.2. Descripción de la metodología.

Consiste en descomponer sistemáticamente un suceso complejo denominado suceso tope en sucesos intermedios hasta llegar a sucesos básicos. En el proceso de descomposición del árbol se recurre a una serie de puertas lógicas que representan los operadores del álgebra de sucesos. Los dos tipos más elementales corresponden a las puertas AND y OR. La puerta OR se utiliza para indicar un «0» lógico y significa que la salida lógica ocurrirá siempre y cuando ocurran por lo menos una de sus entradas lógicas. La puerta AND se utiliza para indicar un «Y» lógico y para que ocurra la salida es necesario que ocurran conjuntamente todas las entradas lógicas.

Cuantificación del árbol

La lógica del árbol se reduce hasta obtener las combinaciones mínimas de sucesos primarios cuya ocurrencia simultánea garantiza la ocurrencia del propio suceso tope. Cada una de estas combinaciones, también llamadas conjunto mínimo de fallo corresponde a la intersección lógica en Algebra de Boole de varios sucesos elementales. La probabilidad de un conjunto mínimo de fallo viene dada por el producto de las probabilidades de los sucesos elementales que lo componen y el suceso tope viene representado por la unión lógica de todos los N conjuntos mínimos de fallos mediante la siguiente expresión simplificada (para sucesos raros):

\[Q = \sum_{i=1}^{N} CM_i \]

donde \(CM_i \) designa la probabilidad de un conjunto mínimo de fallos:

\[CM_i = \prod_{s=1}^{P} a_s \]

siendo \(a_s \) la probabilidad de s-ésimo suceso básico del conjunto mínimo de P sucesos (o de orden P).

Medidas de importancia

Una de las aplicaciones de mayor utilidad práctica es la realización de los análisis de importancia. Éstos tienen como objetivo evaluar el impacto en los resultados debido a la variación de la probabilidad de un suceso o de una hipótesis mientras que las medidas de importancia son índices que indican la importancia de un suceso o de un grupo de sucesos. A continuación se muestran algunos ejemplos.

Medida de Importancia de Fussell-Vesely, FV. Se define como el cociente entre la suma de las probabilidades de todos los conjuntos mínimos que contienen a este componente y la probabilidad total (o la suma de todos los conjuntos mínimos)
Factor de Reducción del riesgo, RRW. Es el número de veces que se reduce la probabilidad de fallo total si dicho elemento nunca fallara, es decir, si su probabilidad de fallo fuera igual a cero.

Factor de Incremento del riesgo, RAW. Proporciona información de cuánto puede aumentar el riesgo global si el elemento objeto de análisis falla, es decir, si su probabilidad de fallo fuera igual a la unidad.

A12.3. Ejemplo de aplicación.

En la siguiente figura se muestra un diagrama simplificado de árbol de fallos para exposiciones accidentales debido a la entrada imprevista de una persona a la sala de tratamiento durante la irradiación de un paciente (los datos de probabilidad utilizados son hipotéticos y válidos únicamente desde el punto de vista ilustrativo).

![Fig. A12.1 Árbol de Fallos](image)

Para este ejemplo, la frecuencia de la exposición accidental se puede calcular como:

\[F = CM_1 + CM_2 = 4.08 \times 10^{-7} \]

Donde:
\[CM_1 = A \times B \times C \times E = 4.00 \times 10^{-7} \]

\[CM_2 = A \times B \times D \times E = 8.00 \times 10^{-9} \]

A12.4. Referencias.

APÉNDICE 13. EJEMPLOS DE ANÁLISIS DE SENSIBILIDAD Y DE IMPORTANCIA.

A13.1. Medidas de importancia

- **Importancia Fussell-Vesely (FV):**

 \[
 FV_A = \frac{A \cdot B \cdot C \cdot E + A \cdot B \cdot D \cdot E}{F}
 \]

 Suceso básico A:

 \[
 FV_B = \frac{A \cdot B \cdot C \cdot E + A \cdot B \cdot D \cdot E}{F}
 \]

 Suceso básico B:

 \[
 FV_C = \frac{A \cdot B \cdot C \cdot E}{F}
 \]

 Suceso básico C:

 \[
 FV_D = \frac{A \cdot B \cdot D \cdot E}{F}
 \]

 Suceso básico D:

 \[
 FV_E = \frac{A \cdot B \cdot C \cdot E + A \cdot B \cdot D \cdot E}{F}
 \]

 Suceso básico E:

- **Factor de Reducción del Riesgo (FRR):** se sustituye por 0 el valor de la probabilidad de ocurrencia del componente evaluado

 \[
 FRR_A = \frac{F}{0 \cdot B \cdot C \cdot E + 0 \cdot B \cdot D \cdot E} = \frac{F}{0} = \infty
 \]

 Suceso básico A:

 \[
 FRR_B = \frac{F}{A \cdot 0 \cdot C \cdot E + A \cdot 0 \cdot D \cdot E} = \frac{F}{0} = \infty
 \]

 Suceso básico B:

 \[
 FRR_C = \frac{F}{A \cdot B \cdot D \cdot E}
 \]

 Suceso básico C:

 \[
 FRR_D = \frac{F}{A \cdot B \cdot C \cdot E}
 \]

 Suceso básico D:

 \[
 FRR_E = \frac{F}{A \cdot B \cdot C \cdot 0 + A \cdot B \cdot D \cdot 0} = \frac{F}{0} = \infty
 \]

 Suceso básico E:

- **Factor de Incremento del Riesgo (FIR):** se sustituye por 1 el valor de la probabilidad de ocurrencia del componente evaluado

 \[
 FIR_B = \frac{A \cdot C \cdot E + A \cdot D \cdot E}{F}
 \]

 Suceso básico B:
Suceso básico C:

\[FIR_C = \frac{A \times B \times E + A \times B \times D \times E}{F} \]

Suceso básico D:

\[FIR_D = \frac{A \times B \times E}{F} \]

Suceso básico E:

\[FIR_E = \frac{A \times B \times C + A \times B \times D}{F} \]

A13.4. Referencias.

TABLA A13.1 RESUMEN DE MEDIDAS DE IMPORTANCIA

<table>
<thead>
<tr>
<th>Suceso Básico</th>
<th>Probabilidad /Frecuencia</th>
<th>Importancia Fussell Vesely</th>
<th>Factor de Reducción del Riesgo</th>
<th>Factor de Incremento del Riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Resultado</td>
<td>Interpretación</td>
<td>Resultado</td>
</tr>
<tr>
<td>A</td>
<td>1 / año</td>
<td>1</td>
<td>∞</td>
<td>Si el componente evaluado (A) no ocurriera, el riesgo se reduciría a cero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El suceso A participa en todas las secuencias accidentales analizadas</td>
<td>∞</td>
<td>Si el suceso B ha ocurrido (P=1) el riesgo calculado se incrementaría en 200 veces</td>
</tr>
<tr>
<td>B</td>
<td>5.000 E-003</td>
<td>1</td>
<td>∞</td>
<td>Si el componente evaluado (B) no ocurriera, el riesgo se reduciría a cero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El suceso B participa en todas las secuencias accidentales analizadas</td>
<td>∞</td>
<td>Si el suceso B ha ocurrido (P=1) el riesgo calculado se incrementaría en 200 veces</td>
</tr>
<tr>
<td>C</td>
<td>1.000 E-001</td>
<td>0.98</td>
<td>51</td>
<td>Si el componente evaluado (C) no ocurriera, el riesgo calculado se reduciría 51 veces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El suceso C participa en las secuencias que representan el 98 % de la frecuencia total</td>
<td>51</td>
<td>Si el suceso C ha ocurrido (P=1) el riesgo calculado se incrementaría en 9.8 veces</td>
</tr>
<tr>
<td>D</td>
<td>2.000 E-003</td>
<td>0.01961</td>
<td>1.02</td>
<td>Si el componente evaluado (D) no ocurriera, el riesgo calculado se reduciría un 2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El suceso D participa en las secuencias que representan el 2 % de la frecuencia total</td>
<td>1.02</td>
<td>Si el suceso D ha ocurrido (P=1) el riesgo calculado se incrementaría en 9.8 veces</td>
</tr>
<tr>
<td>E</td>
<td>8.000 E-004</td>
<td>1</td>
<td>∞</td>
<td>Si el componente evaluado (D) no ocurriera, el riesgo se reduciría a cero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>El suceso D participa en todas las secuencias accidentales analizadas</td>
<td>∞</td>
<td>Si el suceso E ha ocurrido (P=1) el riesgo calculado se incrementaría en 1250 veces</td>
</tr>
</tbody>
</table>

83
APÉNDICE 14. EJEMPLO DE ANÁLISIS CUALITATIVO DE INCERTIDUMBRES.

A14.1 Introducción.

En este Apéndice se muestra un método para llevar a cabo un análisis cualitativo de incertidumbres de forma sistemática.

A14.2 Explicación del método.

El procedimiento para llevar a cabo un estudio cualitativo de las incertidumbres consiste en elaborar una tabla concisa, en la que se relacionan las diferentes áreas de un análisis de riesgo, con las potenciales limitaciones asociadas a modelos y datos de entrada, clasificando su impacto en los resultados. Un ejemplo se muestra en la Tabla A13.1

TABLA A13.1 Formato utilizado para el análisis cualitativo de incertidumbres

<table>
<thead>
<tr>
<th>Tipo de Incertidumbre:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>Tratamiento dado en el estudio a la fuente de incertidumbre y medidas para minimizar el impacto de la misma</td>
</tr>
</tbody>
</table>

Dónde:

Tipo de Incertidumbre: Se clasifican las incertidumbres en cuatro tipos: 1) incertidumbres según el grado de profundidad del estudio; 2) incertidumbres de los modelos; 3) incertidumbres de los valores de los parámetros; y 4) aplicabilidad de los resultados del APS al caso en cuestión.

Nr.: número consecutivo de las fuentes de incertidumbres. Se utilizan dos cifras significativas: X.Y. La primera cifra (X) toma valores del 1 al 4 y coincide con el número asignado a cada tipo de incertidumbres. La segunda cifra (Y) es un número consecutivo que comienza con 1, en cada uno de los cuatro tipos de incertidumbres.

Posible fuente de incertidumbre: se analiza de manera sistemática las fuentes potenciales de incertidumbres en cada una de las etapas principales de un APS. Para garantizar la sistematicidad del estudio se incluyen todas las potenciales fuentes de incertidumbre no únicamente las principales. La importancia se destaca en la columna de **Impacto**.

Efecto potencial de la incertidumbre: se refiere a las consecuencias de la misma sobre los resultados del APS.
Impacto: la clasificación según el impacto se realiza en tres niveles: Bajo: Se aplica a aquellas fuentes de incertidumbres que han sido suficientemente minimizadas en el estudio. Moderado: se aplica a aquellas fuentes de incertidumbres que deben tenerse en cuenta durante la interpretación de los análisis de resultados, pero que no tienen una gran influencia en las resultados finales. Significativo: se aplica a aquéllas que pueden tener una elevada influencia en la interpretación de los resultados y que no se deben dejar de tenerse en consideración.

Tratamiento dado en el estudio a la fuente de incertidumbre y medidas para minimizar el impacto de la misma: en este apartado se indica de manera concisa el tratamiento dado en el estudio a la fuente de incertidumbre en cuestión, y se identifican las principales medidas adoptadas en el estudio para disminuir el impacto de la misma sobre los resultados.

Comentarios: se indica cualquier otro aspecto de interés relacionado con la fuente de incertidumbre.

A14.3 Ejemplo de fuentes de incertidumbres.

La Tabla A13.1 muestra un ejemplo de las fuentes de incertidumbres en un estudio de APS a un acelerador lineal de unos médicos

<table>
<thead>
<tr>
<th>No</th>
<th>Posible fuente de incertidumbre</th>
<th>Efecto potencial sobre el Estudio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incertidumbres según el grado de detalle del estudio</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Insuficiente alcance del estudio para el análisis de todas las fuentes de peligro</td>
<td>Es posible que otros peligros potenciales con mayor probabilidad de ocurrencia no sean gestionados por la gerencia</td>
</tr>
<tr>
<td>2.</td>
<td>Insuficiente complejitud del estudio para todas las etapas y actividades relacionadas con el proceso de tratamiento</td>
<td>Si el alcance del estudio está muy limitado, éste no permitiría tomar decisiones, o la decisión adoptada respecto a una etapa del servicio de radioterapia podría tener un efecto perjudicial sobre otra etapa</td>
</tr>
<tr>
<td>3.</td>
<td>No inclusión de todas las personas expuestas</td>
<td>Estudio incompleto. Gestión de riesgos deficiente.</td>
</tr>
<tr>
<td>4.</td>
<td>Excesiva modularización de los equipos que intervienen en el proceso de tratamiento</td>
<td>La excesiva modularización de los equipos puede traer como consecuencia que no se analicen modos de fallos relevantes.</td>
</tr>
<tr>
<td>5.</td>
<td>Deficiente composición multidisciplinaria del equipo de trabajo del estudio</td>
<td>Errores de modelación provocados por un conocimiento limitado del proceso de tratamiento, los equipos y las metodologías de análisis de riesgo</td>
</tr>
<tr>
<td>6.</td>
<td>Información sobre el diseño de los equipos, controles, protección de tareas de mantenimientos, diagramas y planos, procedimientos de</td>
<td>Durante esta etapa pueden acumularse indefiniciones e imprecisiones que eventualmente provoquen que los modelos de APS no simulen adecuadamente el proceso</td>
</tr>
<tr>
<td>No</td>
<td>Posible fuente de incertidumbre</td>
<td>Efecto potencial sobre el Estudio</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>trabajo del proceso de tratamiento, etc., descrita en insuficiente detalle para realizar un APS</td>
<td></td>
</tr>
<tr>
<td>Incertidumbres en los modelos de APS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Incorrecta definición de la severidad de las consecuencias indeseadas o exposiciones accidentales</td>
<td>Posible sobreestimación o subestimación del riesgo de algunos sucesos iniciadores</td>
</tr>
<tr>
<td>8</td>
<td>Listado incompleto de sucesos iniciadores de accidente</td>
<td>Omisión de secuencias accidentales significativas</td>
</tr>
<tr>
<td>9</td>
<td>Deficiente agrupamiento de sucesos iniciadores. Denominación imprecisa del grupo de iniciadores</td>
<td>Pérdida de información significativa sobre el origen de los sucesos iniciadores.</td>
</tr>
<tr>
<td>10</td>
<td>Las barreras y medidas de seguridad del proceso de tratamiento y los equipos no están establecidas sobre la base de la definición de funciones de seguridad.</td>
<td>Dificulta la modelación de árboles de sucesos y árboles de fallo. Podría suceder que los árboles de sucesos y árboles de fallo no simulen adecuadamente la seguridad del proceso de tratamiento.</td>
</tr>
<tr>
<td>11</td>
<td>Alcance limitado del análisis de dependencias cualitativas</td>
<td>Pueden considerarse como independientes sucesos que realmente tengan dependencias funcionales o por equipos compartidos (o tareas compartidas)</td>
</tr>
<tr>
<td>12</td>
<td>Alcance limitado del análisis de errores humanos (valores de barrido)</td>
<td>Estimaciones muy conservadoras de la probabilidad de error humano</td>
</tr>
<tr>
<td>13</td>
<td>Durante la modelación de árboles de sucesos se comprobó que en algunas etapas y tareas del proceso de tratamiento se pueden detectar errores de etapas previas y en otras no.</td>
<td>Dificulta la modelación de árboles de sucesos y árboles de fallo. Podría suceder que los árboles de sucesos y árboles de fallo no simulen adecuadamente la seguridad del proceso de tratamiento</td>
</tr>
<tr>
<td>14</td>
<td>Deficiente modelación de los árboles de sucesos</td>
<td>Podría suceder que los árboles de sucesos no simulen adecuadamente la seguridad del proceso de tratamiento</td>
</tr>
<tr>
<td>15</td>
<td>Deficiente modelación de árboles de fallos</td>
<td>Podría suceder que los árboles de fallos no incluyan todos los modos de fallo o errores humanos relacionados con el evento tope. Errores en el tipo de compuerta</td>
</tr>
<tr>
<td>16</td>
<td>Errores en la determinación de las ecuaciones booleanas</td>
<td>Errores en los resultados de la cuantificación de la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>Incertidumbres en los valores de los parámetros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Aplicabilidad de los datos de fiabilidad de los componentes</td>
<td>Incertidumbres en los resultados de la cuantificación de la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>No.</td>
<td>Posible fuente de incertidumbre</td>
<td>Efecto potencial sobre el Estudio</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>18.</td>
<td>Aplicabilidad de los datos de fiabilidad del software</td>
<td>Incertidumbres en la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>19.</td>
<td>Aplicabilidad de los datos de Probabilidades de Error Humano</td>
<td>Incertidumbres en los resultados de la cuantificación de la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>20.</td>
<td>Limitaciones en la estimación de las probabilidades de fallos causa común residuales</td>
<td>Incertidumbres de la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>21.</td>
<td>Propagación de las incertidumbres a los resultados finales</td>
<td>Incertidumbres en los resultados de la cuantificación de la frecuencia de las exposiciones accidentales</td>
</tr>
<tr>
<td>22.</td>
<td>Uso insuficiente de análisis de sensibilidad e importancia.</td>
<td>Dificulta el análisis de los resultados</td>
</tr>
<tr>
<td></td>
<td>Aplicabilidad de los Resultados del APS</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Escasa garantía de calidad del APS</td>
<td>Propagación de errores a lo largo del estudio</td>
</tr>
<tr>
<td>24.</td>
<td>Aplicabilidad de los resultados</td>
<td>Toma de decisiones erróneas relacionadas con la seguridad</td>
</tr>
</tbody>
</table>

A14.4 Referencias.

APÉNDICE 15. EJEMPLO DE ANÁLISIS CUANTITATIVO DE INCERTIDUMBRES.

A15.1 Introducción.

El propósito del análisis cuantitativo de incertidumbres es calcular la variabilidad de la frecuencia total del suceso tope debido a las incertidumbres de las probabilidades de los sucesos básicos. En este apéndice se presenta un ejemplo de este tipo de análisis.

A15.2 Explicación del método.

El análisis se realiza a partir de las ecuaciones de cálculo de la frecuencia total, la probabilidad asignada a cada suceso básico y su distribución y aplicando la simulación de Monte Carlo por momentos.

Los principales pasos del análisis de incertidumbres son:

- Proporcionar la medida de incertidumbres de cada suceso básico.
- Calcular los primeros cuatro momentos de los percentiles de 5%, 50%, 95% y valor medio

Los valores de momentos calculados son los siguientes (n=número de muestras, xi son los valores calculados para i =1, …, n):

Media:

\[\bar{x} = \frac{\sum_{i} x_i}{n} \]

Varianza:

\[s^2 = \frac{\sum_{i} (x_i - \bar{x})^2}{n - 1} \]

Intervalos:

\[m_k = \frac{\sum_{i} (x_i - \bar{x})^k}{n - 1} \]

Asimetría (skewness):

\[\beta_{1/2} = \frac{m_3}{s^3} \]

Aplanamiento (kurtosis):

\[\beta_{2/2} = \frac{m_4}{s^4} \]
Por lo general las incertidumbres en los estudios cuantitativos de riesgos son altas debido a que estas herramientas tratan de predecir secuencias de sucesos que no han ocurrido nunca o de los que se tiene muy poca referencia estadística.

A15.3 Ejemplo de aplicación.

A continuación se muestra un ejemplo de los resultados del análisis de incertidumbres del árbol de sucesos del Apéndice 11

Incertidumbre de los datos

<table>
<thead>
<tr>
<th>Cabeceros del árbol de eventos</th>
<th>Suceso Iniciador</th>
<th>No detectar, durante la delineación de volúmenes, errores de geometría producidos en las etapas precedentes</th>
<th>No detectar, durante la planificación dosimétrica, errores de geometría producidos en las etapas precedentes</th>
<th>No detectar durante la revisión de la imagen portal en la sesión inicial producidos en las etapas precedentes</th>
<th>No realizar imágenes periódicas durante el tratamiento</th>
<th>No detectar durante la revisión médica del paciente errores de geometría o de dosis cuando las desviaciones de éstas superan el 10 % de la dosis prescrita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor Utilizado</td>
<td>1.000E+002</td>
<td>1.000E-001</td>
<td>1.000E-001</td>
<td>1.000E-002</td>
<td>9.000E-001</td>
<td>1.000E-001</td>
</tr>
<tr>
<td>5TH</td>
<td>3.719E+000</td>
<td>1.177E-002</td>
<td>1.304E-002</td>
<td>3.921E-004</td>
<td>1.095E-001</td>
<td>1.206E-002</td>
</tr>
<tr>
<td>95TH</td>
<td>3.785E+002</td>
<td>3.092E-001</td>
<td>3.233E-001</td>
<td>3.630E-002</td>
<td>8.862E-001</td>
<td>2.885E-001</td>
</tr>
<tr>
<td>Mínimo</td>
<td>6.219E-001</td>
<td>2.652E-003</td>
<td>3.806E-003</td>
<td>3.250E-005</td>
<td>2.737E-002</td>
<td>1.465E-003</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>2.270E+002</td>
<td>1.125E-001</td>
<td>1.142E-001</td>
<td>2.226E-002</td>
<td>2.405E-001</td>
<td>1.065E-001</td>
</tr>
<tr>
<td>Asimetría</td>
<td>7.031E+000</td>
<td>2.965E+000</td>
<td>2.721E+000</td>
<td>9.325E+000</td>
<td>5.175E-001</td>
<td>3.386E+000</td>
</tr>
<tr>
<td>Aplanamiento</td>
<td>7.205E+001</td>
<td>1.529E+001</td>
<td>1.313E+001</td>
<td>1.270E+002</td>
<td>2.313E+000</td>
<td>2.021E+001</td>
</tr>
</tbody>
</table>

Incertidumbre de los resultados

<table>
<thead>
<tr>
<th>Incidente Recuperable de 1 paciente</th>
<th>Exposición Accidental de 1 paciente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor calculado</td>
<td>9.000E-003</td>
</tr>
<tr>
<td>Media</td>
<td>6.786E-003</td>
</tr>
<tr>
<td>5TH</td>
<td>1.077E-005</td>
</tr>
<tr>
<td>Mediana</td>
<td>4.696E-004</td>
</tr>
<tr>
<td>95TH</td>
<td>1.883E-002</td>
</tr>
<tr>
<td>Mínimo</td>
<td>5.932E-007</td>
</tr>
<tr>
<td>Máximo</td>
<td>1.166E+000</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>4.449E-002</td>
</tr>
</tbody>
</table>
A15.4 Referencias.

LISTA DE PARTICIPANTES.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Institución, país</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Duménigo</td>
<td>Centro Nacional de Seguridad Nuclear, Cuba</td>
</tr>
<tr>
<td>J.M. Delgado</td>
<td>Hospital Universitario 12 de octubre, España</td>
</tr>
<tr>
<td>A. De la Fuente</td>
<td>Centro Nacional de Seguridad Nuclear, Cuba</td>
</tr>
<tr>
<td>B. Faller</td>
<td>Autoridad Reguladora Nacional en Radioprotección, Uruguay</td>
</tr>
<tr>
<td>R. Ferro</td>
<td>Centro Nacional de Seguridad Nuclear, Cuba</td>
</tr>
<tr>
<td>M. Gonçalves</td>
<td>Comissao Nacional de Energia Nuclear, Brasil</td>
</tr>
<tr>
<td>V. Godínez Sánchez</td>
<td>Comisión Nacional de Seguridad Nuclear y Salvaguardias, México</td>
</tr>
<tr>
<td>R. López Morones</td>
<td>Comisión Nacional de Seguridad Nuclear y Salvaguardias, México</td>
</tr>
<tr>
<td>J. Morales</td>
<td>Instituto Nacional de Oncología y Radiobiología, Cuba</td>
</tr>
<tr>
<td>J. McDonnell</td>
<td>Universidad Nacional de Rosario, Argentina</td>
</tr>
<tr>
<td>A. Nader</td>
<td>Organismo Internacional de la Energía Atómica</td>
</tr>
<tr>
<td>P. Ortiz López</td>
<td>Organismo Internacional de la Energía Atómica</td>
</tr>
<tr>
<td>S. Papadopulos</td>
<td>Autoridad Regulatoria Nuclear, Argentina</td>
</tr>
<tr>
<td>A. Paz García</td>
<td>Comisión Nacional de Seguridad Nuclear y Salvaguardias, México</td>
</tr>
<tr>
<td>A. Pérez Mulas</td>
<td>Consejo de Seguridad Nuclear, España</td>
</tr>
<tr>
<td>M.L. Ramírez</td>
<td>Consejo de Seguridad Nuclear, España</td>
</tr>
<tr>
<td>F. Ramírez Pérez</td>
<td>Comisión Nacional de Seguridad Nuclear y Salvaguardias, México</td>
</tr>
<tr>
<td>Y. Ravelo</td>
<td>Instituto Peruano de Energía Nuclear, Perú</td>
</tr>
<tr>
<td>H. Salmon,</td>
<td>Grupo COI, Brasil</td>
</tr>
<tr>
<td>R. Videla</td>
<td>Comisión Chilena de Energía Nuclear, Chile</td>
</tr>
<tr>
<td>J.J. Vilaragut</td>
<td>Centro Nacional de Seguridad Nuclear, Cuba</td>
</tr>
</tbody>
</table>